# Identifying Opportunities for R&D and Collaboration

**Roundtable Discussion** 

## ANL

### Marcel Demarteau, Robert Wagner

### ANL Recently completed and ongoing projects

- 1. ATLAS experiment at CERN  $\rightarrow$  ongoing and completed
  - FTK to Level-2 Interface Card (ATCA hardware and firmware)
  - FELIX (firmware)
  - Hardware Track trigger interface (firmware and software)
  - FELIX for the HL-LHC upgrade of ATLAS (hardware and firmware)
  - Concluded work on Tile Cal upgrade (LVPS, HV\_OPTO, QIE FEB, QIE MB, project engineering)
- 2. LBNE (proto DUNE) → ongoing
  - Front-end electronics for Photon detectors (boards + firmware)
- 3. CTA  $\rightarrow$  all completed
  - L2 trigger (boards + firmware)
- 4. g-2  $\rightarrow$  all completed
  - Trolley motor control
  - Field measurement electronics
- Generic R&D → development of wireless techniques in data and power transmission application for particle-physics detectors
- 6. Electronics for quantum computers at the University of Chicago  $\rightarrow$  ongoing
  - Digital synthesizer daughter board
- 7. GRETINA TDAQ System.  $\rightarrow$  Development is ongoing

### Some Current projects



ATLAS TileCAL @ CERN – Low Voltage Power Supplies for Phase 2 Upgrade



LBNE (DUNE) @ FNAL (35-ton prototype) – Front End Electronics for Photon Detectors Now: 35-ton prototype; Next: CERN TB



Synthesizer for a quantum computer



ATLAS TDAQ @ CERN – FTK Readout Driver



CTA – L2 Array Trigger



QIE front-end electronics for ATLAS Tile Calorimeter



## BNL

### Michael Begel, Kai Chen, Paul O'Connor, Martin Purschke

### DAQ Activities Overview

#### • sPHENIX

- Time Projection Chamber Electronics
  - Front End Electronics (FEE)
    - 154k readout channels. 600 FEE cards, each handling 256 channels
    - Total estimated data rate is 940Gbits/s
  - Data Aggregator Module (DAM)
    - Collects data from 600 FEE cards
    - Reduces data via triggering, clustering and compression to reduce data rate to 80Gbits/s
    - Hardware will utilize 24 FELIX PCIe cards, developed for ATLAS by BNL Physics Omega Group
- NSLS II
  - Germanium 384 Element Strip Detector
    - 1<sup>st</sup> system installed at Powder Diffraction (XPD) beamline at NSLS II, future systems at APS and CHESS planned
    - Custom BNL developed ASIC (MARS), provides peak detection and timing circuitry for spectroscopy and time of arrival.
    - The data is collected photon-by-photon and processed in an embedded computer based on the Xilinx Zynq system-on chip, can readout and process > 20M photon events per second
  - VIPIC (Vertically Integrated Photon Imaging Chip)
    - 1Mpixel camera custom-designed for x-ray photon correlation spectroscopy (XCS), an application in which occupancy per pixel is low but high time resolution is needed
    - Takes advantage of 3D integration technology
    - Collaboration between BNL, FermiLab and Argonne
    - Detector Head output provides 36 fibers running at 5Gbps each. DAQ will utilize FELIX PCIe card, developed by BNL Omega Group for ATLAS

### sPHENIX Experiment at the Relativistic Heavy Ion Collider



Inner tracking system (MAPS, TPC) Electromagnetic and Hadronic Calorimeters Streaming readout of the TPC High data rates (~100Gbit/s sustained) – maybe more Proven DAQ architecture



Predecessor experiment "PHENIX" was the trailblazer for "Petascale" data volumes in the early 2000's

15KHz event rate (remember these are heavyion collisions)

### Technologies

- Streaming readout of the TPC using the ALICE SAMPA chip
- ATLAS FELIX card adapted for SAMPA readout
- New front-ends for calorimeter electronics
- R&D-themed DAQ system "RCDAQ" has become a real hit worldwide
- sPHENIX uses RDAQ for virtually all R&D data taking needs
- First-rate data format and assorted analysis framework might spill over to the EIC era

#### ATLAS Phase-I Upgrade (Near term projects)

- Front-End Link eXchange (FELIX) in readout and DAQ
  - factorize front-end electronics from data handling with compact, high-density, scalable, low maintenance, easily upgradeable, commodity-based solution
    - 48 pairs of optical links up to 14 Gb/s, PCIe Gen3 x16 lanes
    - Supports to interface TTC, TTC-PON, White Rabbit timing systems
  - BNL co-leads ATLAS readout architecture development
    - Contribute to hardware, link firmware and system integration
  - FELIX adopted by ATLAS for Phase-I readout
    - LAr, Muon, Level-1 Calorimeter Trigger
  - paradigm shift adopted by ALICE, ATLAS, LHCb, sPHENIX, and proto-DUNE
    - **proto-DUNE**: readout one TPC Anode Plane Array
    - *sPHENIX*: TPC & MVTX readout
    - evaluating use at **DUNE**, BNL & ANL Light Sources **NSLS II**
    - Proposed 2017 LDRD: to use FELIX in *eRHIC*
- Global Feature Extractor (gFEX) in Level 1 Calorimeter Trigger
  - Conceived, designed, developed, prototyped, and produced at BNL
    - collaboration of BNL, Chicago, Indiana, Lund, Oregon, Pittsburgh, Stockholm
  - trigger hardware using FPGA with many transceivers satisfies the high-bandwidth, fixed-latency, & processing requirements
    - 3 Virtex Ultrascale and 1 ZYNQ Ultrascale+ FPGAs
    - 16GB DDR4 DIMM
    - 30 Layers Stack up
    - 12.8 Gb/s optical links, and onboard electronical 25.6 Gb/s GTY links
    - 312 RX links, 96 TX links
    - 1.12 Gb/s parallel data bus between processor FPGA
  - LHCb group at Milan purchased a gFEX board for evaluation

### ATLAS HL-LHC Upgrade

- FELIX in the Data Acquisition
  - Used by all subsystems
  - based on the Phase-I FELIX card designed, developed at BNL
    - PCIe Gen4 x16 lanes
    - FPGA: Kintex Ultrascale+ or ZYNQ Ultrascale+
  - BNL will reprise Phase-I role with additional production responsibilities
- Features Global <u>Common</u> Module (GCM) in the Global Trigger System
  - different functions implemented in firmware rather than in hardware
  - based on Global Feature Extractor Module (gFEX) that was conceived, designed, developed, prototyped & produced at BNL
  - kernel components: FPGAs
    - 2x Virtex Ultrascale+
    - 1x ZYNQ Ultrascale+
  - firmware for frame and serial-to-time multiplexing & transmission to Global Event Processor

## Fermilab

Kurt Biery, Alan Prosser, Ryan Rivera, Lorenzo Uplegger

### Test Beam and Test Stand DAQ Technologies

- This is a brief **survey** of DAQ technologies for **test beams** and **test stands** currently available at U.S. institutions.
  - Based on input from SLAC, BNL, and FNAL.
- The goal is to raise awareness of existing solutions and to spark discussion toward future collaborations and new developments.
- SLAC (Contact: Carsten Hast, hast@slac.stanford.edu)
  - No standard test beam facility DAQ. Users generally provide their own DAQ. Available tracking telescope, ADCs, flash ADCs, scalars.
- BNL (Contact: Martin Purschke, purschke@bnl.gov)
  - RCDAQ was developed as a general purpose DAQ used by experiments, test beams, and test stands. Light weight
    and configured via Linux script.
- Fermilab (Contact: Mandy Rominsky, rominsky@fnal.gov)
  - Test beam facility DAQ based on *otsdaq/artdaq* (general purpose DAQ with web-based configuration and control) commissioning. Available tracking telescopes, wire chambers, Cerenkov, scalars, PREP equipment, CAPTAN FPGAbased test stand hardware.

### otsdaq and artdaq Data Acquisition Toolkits

- *otsdaq* is a Ready-to-Use DAQ solution aimed at test-beam, detector development, and other rapid-deployment scenarios
  - otsdaq uses the artdaq framework under-the-hood, providing flexibility and scalability to meet evolving DAQ needs
  - Library of supported front-end boards and firmware modules implementing custom protocol
  - Provides Run Control and readout software that works with otsdaq firmware
- artdaq is a plugin-based DAQ framework, used by several Fermilab experiments such as DUNE and mu2e
  - Flexible design allows for different detector technologies and event selection
  - Allows for data to be analyzed mid-stream for software triggers
  - Configurable asynchronous readout
  - *artdaq* filtering modules are compatible with the *art* analysis suite





## Test Stand Hardware - NIM+

- FPGA-based coincidence module.
  - Custom daughter card (FNAL/PPD) to digitize NIM signals for processing on CAPTAN+ FPGA board (FNAL/SCD).
- Firmware developed for signal processing (delay and stretch).
- Remote setting of parameters via *otsdaq* and data readout event-by-event supported
- Successfully used in 4+ efforts at FTBF in May.
- Goal is 2 modules available from PREP in next month.



## LBNL

Carl Grace, John Joseph, Sergio Zimmermann

- High Reliability, Cold Electronics
  - e.g. ICECUBE
    - ATWD, waveform digitizing ASIC
    - Electronics designed to operate from 0C to -60C
  - DUNE Deep Underground Neutrino Experiment
    - Cold ADC ASIC 30+ years immersed in Lar
    - LArPIX, pixelated low power readout ASIC
    - ASICs operate from 88K to room temperature
  - SNAP
    - CCD Readout processing ASIC with pipelined ADC
    - DC/DC Converter and Clock Driver ASIC
    - Designed to operate at -140C
- On Detector Processing with custom instructions
  - Designer HPC ASIC based on RISC-V open source Instruction Set
  - Currently in design targeting 28nm
- Digital-on-Top physical design methodology for Hybrid Pixels

- FPGA
  - Real Time Signal processing
  - Embedded networking
    - High speed serial links (electrical & optical)
    - Ethernet, JESD204B
  - Hard & Soft Core CPUs and embedded software
  - VHDL, Verilog, & high level synthesis
  - High speed controls & synchronization
- Network based data streaming to NERSC
- Switched network based event builder and processor farm
- ATCA/uTCA
  - Si Detector DAQ platforms
- System design, integration, and deployment

## PNNL

### Eric Church, Jim Fast, Lynn Wood

### DAQ Development for National Security

#### **Generally use COTS DAQ solutions**

- Development effort/cost not feasible in 3-year programs
- Size, weight and power are often design drivers
- FPGA-based real-time analysis often employed
- Scaling COTs solutions to 1-10k channel systems is ineffective technology gap for this application space

#### Some recent PNNL development systems

#### High-Rate HPGe Detector

- Assay of spent fuel with gammas with segmented HPGe detector; extreme pileup and deadtime
- Real-time FPGA processing in 250MS/sec streaming data for trigger and energy

#### **Analog Electronics for Ultra-Low Background Detectors**

- Preamplifier front-end electronics design
- Ultra-clean material selection, assay, and assembly
- Custom cleanroom integration with detectors

#### Low-Power, Miniaturized Circuitry

- Injectable fish tags for salmon dam survivability assay
- Custom battery and low-power electronics design



### Deep Learning – micro-BooNE

- PNNL has expertise in deep learning for Science and National Security efforts
- As members of the DUNE DAQ consortium, we have performed early work in our partnership with Micron/Pico Electronics in Seattle to put Deep Learning inference on FPGAs for triggering purposes
- Leveraging national security investments, we are looking at ways to identify beam-off physics such as proton decay

A board like this one could be a DUNE DAQ FELIX replacement for the BNL711.

#### This event can fake proton decay:





## Rice University

Paul Padley

### 4 Faculty

- Karl Ecklund (Particle Physics, CMS)
  - Pixel/Tracker front end daq electronics/software
  - US CMS manager Phase 2 Pixels
- Paul Padley (Particle Physics,)
  - US CMS Detector operations manager
  - Long history of DAQ and Trigger projects
    - Currently trigger elements of CMS muon trigger
    - <u>http://padley.rice.edu/cms</u>
- Frank Geurts (Heavy Ion, STAR, CMS)
  - On CMS, endcap muon system online systems
- Wei Li (Heavy Ion, CMS)
  - DAQ software

### 4 Engineers

- M. Matveev, Ph.D. Research Electronics
  - FPGA Programming, board design, optical links
  - Involved in various components of CMS endcap muon trigger electronics
- Ted Nussbaum, EE
  - Analogue electronics, board design, FPGA programing
- Jinghua Liu
  - CMS Endcap muon system online software
- Andrea Petrucci
  - CMS DAQ software.

## SLAC

### Mathew Graham, Günther Haller, Ryan Herbst

- RCE Platform
  - Flexible modular platform for DAQ and trigger applications
    - Low latency network inter-connected platform of FPGAs
    - Deployed for ATLAS, HPS, ProtoDune
    - Development for LSST, KOTO, LDMX
  - Collaborating with Oxford on upgraded version of DPM for deep data buffering
  - Interested in working with other collaborators for additional version of the DPM and COB

Alternative FPGA families

- Additional interconnects such as Hybrid Memory Cube(HMC)
- LCLS-2 DAQ & Fast Detector Development
  - Front end triggering and data reduction at the camera
  - Back end data processing with hardware acceleration in the server farm, machine learning, image processing, etc.
- LCLS-2 Accelerator Controls and Beam Line Data Acquisition in ATCA
  - o 1Mhz beamline data acquisition
- RF based DAQ system in ATCA
  - High frequency multiplex RF readout of Transition Edge Sensors (TES)

- FPGA design expertise
  - Modular design approach to accelerate application development
  - Extensive open source library of protocol and interface libraries
    - Ethernet: ARP, DHCP, ICMP, IPV4, UDP, RDUP

JESD204b

AMBA based protocol cores

- AXI-Lite for register access
- AXI-Stream for high speed streaming interfaces
- AXI for DMA and bulk memory access
- **RF** libraries for detector and controls applications
  - LLRF for accelerators
  - Laser locker and precision timing
  - TES readout
  - Beam Position Monitors (BPM)
- Interested in multi-lab collaboration in shared libraries
  - Use, test and extend existing libraries
  - Add new modules to existing libraries
  - Collaborative development on future interface and common modules

## University of Florida

Darin Acosta, Ivan Furič, Jaco Konigsberg

## U Florida Trigger-DAQ Activities

- Level-1 Endcap Muon Triggers for CMS
  - CSC Track-Finder, 2008-2015
  - Phase-1 Endcap Muon Track-Finder, 2016–
  - HL LHC Endcap Muon Trigger, ~2026--
- Salient Features:
  - Optical link I/O (1.6Gbps→10Gbps→26Gbps)
  - Large FPGA for standalone muon track-finding (Xilinx V5→V7→US+)
  - Large on-board RAM for PT Look-up Table (4MB→1GB→64GB)
- Algorithms:
  - Track building: Extrapolations  $\rightarrow$  Patterns
  - Measurement: Likelihood fit → Machine Learning (BDTs, DNNs)
  - Achieving same rates in endcap as for barrel region
- Firmware:
  - Early adopter of high-level synthesis: single source code for synthesis and software emulation (custom macros → Vivado HLS)
  - Good collaboration with NSF CHREC center at UF (ECE Department) for firmware projects

Phase-1 "MTF7" board, uTCA format with mezz.



## U Florida Trigger-DAQ Activities

- HL LHC Level-1 AM-based Track-Trigger for CMS
  - Track reconstruction using stubs from double-sided outer tracker modules
    - 4  $\mu$ sec latency w/ high-efficiency and offline level p<sub>T</sub> resolution (@ <200> pileup)
  - One of 3 approaches considered
  - In collaboration with Fermilab et al. [NW, TAMU, Italy, France, Brasil]
  - Associative Memory + FPGA and Pulsar board projects
    - Simulation framework development
    - Study and optimization of patterns & data flow
    - Implementation in vertical slice demo [w/ AM instanced in FPGA] => meeting specs
- R&D
  - Development of an ATCA "Advanced Processor" in collaboration with U Wisconsin
  - Samtec Firefly optical link tests from  $14G \rightarrow 28G$
  - DD4 RAM tests



## University of Kentucky

Wes Gohn



# g-2 DAQ Design



 Must accommodate 12 Hz average rate of muon fills that consist of sequences of eight successive 700 µs fills with 10 ms fill-separations.



- Data is processed from 1296 channels of 12 bit 800 MSPS waveform digitizers.
- Time-averaged rate of raw ADC samples is 20 GB/s, which must be reduced by a factor of 100.
- Data is processed in GPUs to accomplish this task.
- We use the MIDAS data acquisition software for our DAQ.
- Total data on tape after 2 years of running will be 7 PB.
- An online data quality monitor uses art with ZeroMQ, node.js, and plotly to display data.





# DAQ with GPUs



- The Muon g-2 DAQ uses 28 Nvidia Tesla K40 GPUs to process data.
- Each K40 has 2880 CUDA cores and 288 GB/s memory bandwidth and ECC memory protection.
- MIDAS frontends are written in C++ with CUDA and multithreaded with mutex locks.
- Must process each event in < 83 ms to keep up with fill rate.
- Most time is taken by copying data from TCP socket to GPU memory. Data processing in GPU is very fast.



## University of Wisconsin - Madison

Wesley Smith

### Collaboration: UW CTP7: CMS Phase 1 & HL-LHC

- Operation in CMS since 2015:
  - CMS Phase 1 Level 1 Trigger
  - Layer-1 Calorimeter Trigger
    - 22 CTP7s
  - Integrated Eye Scan capability: non-invasively capture eye diagrams on live operational data
  - Automatic Error Handling
- HL-LHC R&D: Cornell Track Trigger demonstrator test setups
  - 4 CTP7s @ CERN
  - 2nd setup at Cornell: 4 CTP7s
- HL-LHC CMS Endcap Muon and H/ECAL readout, Calorimeter and Correlator Trigger prototype setups: platforms for FW development and testing:
  - CERN (3 setups), Texas A&M, Fermilab, Notre Dame, Princeton, Rutgers, UCLA, Wisconsin

- U. Wisconsin CTP7 MicroTCA Card for Phase 1 Cal. Trig.
  - 12 MGT MicroTCA backplane links 67 Rx and 48 Tx 10G optical links



Virtex-7 690T ZYNQ `045 System-on-Chip FPGA (Data (SoC) Device Processor) (embedded Linux control platform)

### UW TDAQ R&D Activities

- Explore hardware technologies targeted for the Phase 2 upgrade
  - ATCA Form Factor including Rear Transition Module
  - MGT Link design beyond 10G line rates (16G, 25+G)
  - Efficient cooling of next-gen FPGAs
  - Next generation IPMI and embedded Linux solutions
  - First ATCA Prototype in 2018, Demonstrators in 2019
    - APd1 Block Diagram available on next slide
  - US CMS "Consortium" collaborating on various aspects
    - US CMS Trigger and Calorimeter and Muon Readouts
    - U. Florida, UIC, Fermilab, Notre Dame, UCLA, Texas A&M
      - e.g. U. Florida on advanced RAM/FPGA interconnections, links
  - Firmware R&D
    - High Level Synthesis (HLS) of Trigger Algorithms
    - Firmware demonstrator using CTP7, Xilinx Vivado HLS in a dedicated framework environment
      - Design trigger algorithms and test derived FW to determine resources, latency, etc.