

Future Processor Architectures

Chris Green
DAQ R&D Workshop
Wednesday, October 11, 2017

Goal in terms of workshop

- Session: Promising Technologies and Techniques
- From charge item (4):
 - "To identify future trends in electronics, computing, and other data acquisition technologies that may be promising areas of research for use in future experiments and ongoing detector research."
- This talk addresses item (4) in the charge
 - "ideally present the breadth of possibilities within the specified topic area."
- Covering roadmap topic areas

Outline

- Focus and motivation
- Current technology drivers and directions
- Survey of current and upcoming technologies
- Conclusion

Focus and motivation

- Triggering / filtering within time constraints will continue to be a demanding challenge, but much HPC-caliber hardware is already commodity.
- Event-building on commodity hardware is already happening: high-speed, low latency local networking is already here, affordable and only getting better.
- Integrated, heterogeneous systems improving rapidly PFLOP racks.
- Moore's Law still (mostly) good for a few years (5nm limit in ~2020) but Dennard scaling has been dead for >10y. Many novel uses for all those transistors which will require planning and ingenuity to take advantage of: need to start now!
- What will be available in 10+ years and how to plan to use it?

What is driving changes in computing architecture?

- DOE's ASCR program looks to be driving a good amount of future technology
- This recent slide provides a good summary of computing drivers

What does the Future Hold: Strategic Vision for ASCR's Research Program

Emerging trends are pointing to a future that is increasingly

- 1. Instrumented: Sensors, satellites, drones, offline repositories
- 2. **Interconnected**: Internet of Things, composable infrastructure, heterogeneous resources
- 3. Automated: Complexity, real-time, machine learning
- 4. Accelerated: Faster &flexible research pathways for science & research insights

What is the role of ASCR's Research Program in transforming the way we carry out energy & science research?

- **1. Post-Moore technologies**: Need basic research in new algorithms, software stacks, and programming tools for quantum and neuromorphic systems
- Extreme Heterogeneity: Need new software stacks, programming models to support the heterogeneous systems of the future
- Adaptive Machine Learning, Modeling, & Simulation for Complex Systems:
 Need algorithms and tools that support automated decision making from
 intelligent operating systems, in situ workflow management, improved
 resilience and better computational models.
- 4. Uncertainty Quantification: Need basic research in uncertainty quantification and artificial intelligence to enable statistically and mathematically rigorous foundations for advances in science domain-specific areas.
- 5. Data Tsunami: Need to develop the software and coordinated infrastructure to accelerate scientific discovery by addressing challenges and opportunities associated with research data management, analysis, and reuse.

Post-Moore directions

Not that post-Moore ...

Numerous Opportunities to Continue Moore's Law Technology! (but winning solution is unclear)

Computing Beyond Moore's Law

	TABLE 1. Summary of techology option				
Improvement Class	Technology	Timescale	Complexity	Risk	Opportunit
Architecture and software advances	Advanced energy management	Near-Term	Medium	Low	Low
	Advanced circuit design	Near-Term	High	Low	Medium
	System-on-chip specialization	Near-Term	Low	Low	Medium
	Logic specialization/dark silicon	Mid-Term	High	High	High
	Near threshold voltage (NTV) operation	Near-Term	Medium	High	High
3D integration and packaging	Chip stacking in 3D using thru-silicon vias (TSVs)	Near-Term	Medium	Low	Medium
	Metal layers	Mid-Term	Medium	Medium	Medium
	Active layers (epitaxial or other)	Mid-Term	High	Medium	High
Resistance reduction	Superconductors	Far-Term	High	Medium	High
	Crystaline metals	Far-Term	Unknown	Low	Medium
Millivolt switches (a	Tunnel field-effect transistors (TFETs)	Mid-Term	Medium	Medium	High
better transistor)	Heterogeneous semiconductors/strained silicon	Mid-Term	Medium	Medium	Medium
	Carbon nanotubes and graphene	Far-Term	High	High	High
	Piezo-electric transistors (PFETs)	Far-Term	High	High	High
Beyond transistors	Spintronics	Far-Term	Medium	High	High
(new logic paradigms)	Topological insulators	Far-Term	Medium	High	High
	Nanophotonics	Near/Far-Term	Medium	Medium	High
	Biological and chemical computing	Far-Term	High	High	High

Slide courtesy of John Shalf

Nowell – SSDBM, June 29, 2017

What is our trajectory? Here is the story.

Xeon Scalable Processor (SP) platform

Platform Topologies

2S Configurations

4S Configurations

8S Configuration

(2S-2UPI & 2S-3UPI shown)

(4S-2UPI & 4S-3UPI shown)

INTEL® XEON® SCALABLE PROCESSOR SUPPORTS

 Looks like Intel has repackaged their standard processor line

Xeon SP roadmap

- Moving slowly ahead
- Not many surprises here: architecture changes unlikely to be earth-shattering.

			Launch		Launch	
Chip Family	Process	PC Chip	Date	Server Chip	Date	Months
Nehalem	45 nm	Core i7	Nov-08	Xeon 5500	Mar-09	4
Westmere	32 nm	Core i7	Jul-10	Xeon 5600	Feb-11	7
Sandy Bridge	32 nm	Core i7	Jan-11	Xeon E5	Mar-12	14
Ivy Bridge	22 nm	Core i7	Apr-12	Xeon E5 v2	Sep-13	17
Haswell	22 nm	Core i7	Jun-13	Xeon E5 v3	Sep-14	15
Broadwell	14 nm	Core i7	Jan-15	Xeon E5 v4	Mar-16	14
Skylake	14+ nm	Core i7	Sep-15	Xeon E5 v5	Jul-17	22
Kaby Lake	14++ nm	Core i7	Jan-17	Xeon E5 v6	Mar-18	14
Cannonlake	10 nm	Core i7	Nov-17	Xeon E5 v7	Nov-18	12
Icelake	10+ nm	Core i7	Jun-18	Xeon E5 v8	Jan-19	7
Tigerlake	10++ nm	Core i7	Jun-19	Xeon E5 v9	Sep-19	3
???	7 nm	Core i7	Jun-20	Xeon E5 v10	Jan-20	-5
???	7+ nm	Core i7	Jun-21	Xeon E5 vll	Jan-21	-5
???	7++ nm	Core i7	Jun-22	Xeon E5 vl2	Jan-22	-5

AMD Zen

- "The Epyc 7000s are system-on-chip designs, which means they do not require an external chipset to operate in single-socket mode or two expand out to two-sockets with NUMA interconnects. All the necessary I/O for linking the sockets is on the chips, as are all of the controllers to link out to memory and peripherals."
 - https://www.nextplatform.com/2017/06/20/competition-returns-x86-servers-epyc-fashion/

AMD Zen (2)

POWER Processor Roadmap

Price, performance, feature and ecosystem innovation

- "Power9 boasts speeds and technologies unseen in any chip before."
 - https://baseline-data.com/blog/disaster-recovery-news/ibm-power9-chip-processor/

IBM Power (2)

Four targeted implementations

Core Count / Size

SMP scalability / Memory subsystem

SMT4 Core 24 SMT4 Cores / Chip Linux Ecosystem Optimized SMT8 Core
12 SMT8 Cores / Chip
PowerVM Ecosystem Continuity

Scale-Out - 2 Socket Optimized

Robust 2 socket SMP system Direct Memory Attach

- Up to 8 DDR4 ports
- · Commodity packaging form factor

Scale-Up - Multi-Socket Optimized

Scalable System Topology / Capacity

- Large multi-socket
- **Buffered Memory Attach**
- · 8 Buffered channels

Modular Execution Slices

POWER8 SMT8 Core

POWER9 SMT8 Core

POWER9 SMT4 Core

Re-factored Core Provides Improved Efficiency & Workload Alignment

- Enhanced pipeline efficiency with modular execution and intelligent pipeline control
- Increased pipeline utilization with symmetric data-type engines: Fixed, Float, 128b, SIMD
- · Shared compute resource optimizes data-type interchange

Intel Xeon Phi - KNL

Knights Landing Overview

TILE

2 VPU

CHA

1MB

2 VPU

Omni-path not shown

Intel Xeon Phi - KNL (2)

 KNL has interesting memory and vector processing features for high performance applications

Memory Modes

Three Modes, Selected at boot

KNL implements all legacy instructions

- Legacy binary runs w/o recompilation
- KNC binary requires recompilation

KNL introduces AVX-512 Extensions

- 512-bit FP/Integer Vectors
- 32 registers, & 8 mask registers
- Gather/Scatter

Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions

Xeon Phi – deployments

- Cori-2 is already KNL
- Recently announced Aurora will feature Knights Hill

ALCF 2021 EXASCALE SUPERCOMPUTER – A21

Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021 Scaled up from 180 PF to over 1000 PF Support for three "pillars" Simulation Data Learning Pre-planning Design review review ◆ Rėbaseline review NRE contract award ◆Build contract modification ALCF-3 Facility and Site Prep, Commissioning ALCF-3 ESP: Application Readiness NRE: HW and SW engineering and productization **Build/Delivery** Acceptance A

CY 2019

CY 2020

CY 2021

CY 2022

CY 2017

CY 2018

NVIDIA Telsa

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm²	610 mm²	815 mm²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN
¹ Peak TFLOPS rates are	based on GPU Boo	st Clock		

NVLink high speed interconnects

Figure 12. Hybrid Cube Mesh NVLink Topology as used in DGX-1 with V100

NVIDIA Volta architecture

- Improved SIMT model
- Multiprocessing capabilities
- Tensor cores

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Figure 4. Volta GV100 Full GPU with 84 SM Units

NVIDIA - deployments Pascal to Volta

Start of Installation Installation Complete

Feature	Titan	Summit	
Application Performance	Baseline	5-10x Titan	
Nodes	18,688	~4,600	
Node performance	1.4 TF	> 40 TF	
Memory per Node	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + 96 GB HBM	
NV memory per Node	0	1600 GB	
System Interconnect	Gemini (6.4 GB/s)	Dual Rail EDR-IB (23 GB/s)	
Interconnect Topology	3D Torus	Non-blocking Fat Tree	
Processors	1 AMD Opteron™ 1 NVIDIA Kepler™	2 IBM POWER9™ 6 NVIDIA Volta™	
File System 32 PB, 1 TB/ Lustre®		250 PB, 2.5 TB/s, GPFS™	

Intel Knights Mill (KNM)

- Expected release in Q4 2017
- Based on KNLs, but <u>optimized for deep learning optimizations</u>.

NVIDIA Tesla P40 Inferencing Accelerator

Based on Pascal

FEATURES

The world's fastest processor for inference workloads

47 TOPS of INT8 for maximum inference throughput and responsiveness

Hardware-decode engine capable of transcoding and inferencing 35 HD video streams in real time

SPECIFICATIONS

GPU Architecture	NVIDIA Pascal™
Single-Precision Performance	12 TeraFLOPS*
Integer Operations (INT8)	47 TOPS* (Tera- Operations per Second)
GPU Memory	24 GB
Memory Bandwidth	346 GB/s
System Interface	PCI Express 3.0 x16
Form Factor	4.4" H x 10.5" L, Dual Slot, Full Height
Max Power	250 W
Enhanced Programmability with Page Migration Engine	Yes
ECC Protection	Yes
Server-Optimized for Data Center Deployment	Yes
Hardware-Accelerated Video Engine	1x Decode Engine, 2x Encode Engine

^{*} With Boost Clock Enabled

AMD Instinct

- https://instinct.radeon.com/en/
- AMD's ML-focussed GPGPU: 16, 32-bit FP.
- Integrated into <u>Project 47</u>, "PFLOP in a rack" for Q4 2017:
 - 20 * (Epyc 7601 + 4 * Instinct MI25).
 - 30 GFLOP/W.

Catapult: datacenter-level FPGA integration

- Microsoft has FPGA available in some of their large-scale cloud resources
- Alternative high-speed network presented as TCP/IP to OS
- Added portion of distributed search engine filtering into user space on FPGA

- 2x Faster at 2x higher load
- Much lower variance

WCS Gen4.1 Blade with NIC and Catapult FPGA

Google Tensor Processing Units (TPU)

- Custom ASIC for Google's TensorFlow framework
- First generation: 8-bit matrix multiply engine, clock speed 700MHz, 8 GiB of dual-channel 2133 MHz DDR3 SDRAM, 34GB/s of bandwidth
 - Up to 128K operations per cycle
 - 83X better performance per watt ratio compared with contemporary CPUs and a 29X better ratio than contemporary GPUs.
- Second generation: both training and inference in a 180 TFLOP system board, complete with custom network to lash several together into "TPU pods" that can deliver Top 500-class supercomputing at up to 11.5 petaflops of peak performance.

Neuromorphic chips

IBM's TrueNorth:

- 1 million neurons and 256 million synapses
- 5.4 billion transistors, and an on-chip network of 4,096 neurosynaptic cores
- 70mW during real-time operation
- The Artificial Brain built by IBM now has 64 Million Neurons (using 64 of the chips), using 10 watts to power all 64
- 10 Billion neurons by 2020

Intel's Loihi

- Test chip, consists of 128 computing cores
- Each core has 1,024 artificial neurons
 - a total of more than 130,000 neurons on chip, and
 - 130 million synaptic connections on chip
- currently limited tests using FPGA for application like path planning
- First test chip will be available in Nov 2017
- Will be available to research groups in 2018

Qualcomm's Zeroth

- Neural Processing Unit
- Making deep learning available to mobile devices
 - 10nm Snapdragon 835 processor

Quantum computers

- D-Wave
 - Quantum annealing device
 - 2000 Q system in Jan 2017, current buyers: Temporal Defense Systems Inc, Google/NASA/USRA, Volkswagen Group, Virginia Tech
 - The world's first commercial quantum-computer processor is smaller than a wristwatch and can evaluate more possibilities simultaneously than there are atoms in the visible universe.
- Google http://www.quantumplayground.net/#/home
 - 22 qubit quantum processing unit (QPU) in its wiring mount, currently in test.
 - 50-qbit next target for early 2018
- IBM https://quantumexperience.ng.bluemix.net/qx/community
 - QX is a five qubit quantum processor and matching simulator
 - A 16 qubit processor was made available in May 2017

Qubit: a unit of quantum information, a twostate quantum-mechanical system, which allows the qubit to be in a superposition of both states.

Automata Processing

 Reconfigurable processing architecture that enables programmers to easily exploit massive parallelism.

 FNAL LDRD to investigate <u>pattern</u> <u>recognition</u> / <u>waveform recognition</u> (M. Wang, et al.)

Currently only available via <u>CAP</u>.

Previously Micron, spun off to <u>Natural Intelligence</u>.

Probabilistic and Approximate computing

- Probabilistic computing: less accurate.
- Approximate computing: less *precise*.
- Implications for fault tolerance / power consumption.
- Examples:
 - Intel PCMOS (went quiet).
 - Lyric Computing (went quiet).
 - Rice U / I-Slate (went quiet).
- Might see some low significance bit decay or truncation at lower power modes in future processors.

Slide from L. Monroe talk, 2015-12-10

Memory and caching storage

- "Holy Grail:" non-volatile (NV), DRAM speeds & latencies, HDD+ capacities.
- DDR4-2666: V, 13.5ns latency, 60GiB/s, \$5-\$9/GiB. DDR5 coming soon. STT MRAM, "tweaks?"
- Intel 3D-Xpoint (Optane): NV, 9us latency, ~2GiB/s, \$4/GiB.
- NRAM (carbon nanotubes, <u>Nantero</u>): NV, <50ns(?), ?? GiB/s, \$??/GiB. Fujitsu to mass-produce in 2018, initially aimed at flash-style packages, capacity, density to increase rapidly. RAM to come.
- ReRAM (e.g. Crossbar): NV, 1T1R (low latency) vs 1TnR (higher density, latency).
 - SMIC presentation Thursday in Beijing!

"File" storage

- SSD (3D-NAND): NV, 20us latency, ~3.5GiB/s, \$0.90/GiB. Likely to be eclipsed within 10y by NRAM / ReRAM.
- HDD: NV, 4ms latency, ~2GiB/s, \$0.06/GiB for 12TB, HAMR -> capacity, throughput increases by factor 10-40 (?) over the next ten years. Possibly eclipsed by NRAM or ReRAM within 10y?
- Tape storage: NV, loooonnnnggg latency, 350MiB/s, \$0.006/GiB for 15TB. Just announced 330TB, capacities, throughput to double every 2 years for the next 10.

Networking: current

- Ethernet is the reliable standby
 - Commodity high-throughput networking: \$10K for 4 x 40 Gb/s ports, or 16 x 10 Gb/s ports
 - RoCEv2 latency as low as 1.3 microseconds
- InfiniBand is commodity
 - \$13k for 36-port EDR 100 Gb/s IB,7 Tb/s total throughput, 90 ns latency
- OmniPath was new in 2015
 - \$8k for 24-port 100 Gb/s, 110ns latency
- Wireless 5GHz (IEEE 802.11ac)
 - up to 1.3 Gb/s on 5 GHz band; 1 ms latency
 - My Mac laptop has one of these!

Networking: near future

- Ethernet: 200 Gb/s planned for 2018/19.
 - 50 Gb/s serial links x 4
 - reduced power consumption w/r/t 100 Gb/s, using 10 lanes @10 GB/s
- InfiniBand: 50 Gb/s lanes in 2017
- 200 Gb/sec Omni-Path 2 was slated for ANL Aurora in 2018
 - this machine is being both re-imagined and delayed
- Intel: Moving the network (OmniPath) into the CPU
- Mellanox: Moving computing (CPUs) into the network

Networking: 10+ years out

Ethernet

- InifiniBand
- Omnipath?

Ethernet Speed

Speed in Development

() Possible Future Speed

Bus technologies

- https://www.nextplatform.com/2017/07/14/systembottleneck-shifts-pci-express/
 - PCIe4.0 in Power9, not Kaby Lake Xeon or Epyc.
 - PCle5.0 spec not complete until 2019, at least a couple of years beyond that.
 - Server systems already hitting bus bottlenecks in some configurations – hence NVLink, etc.
- Anything else is blue-sky: <u>photonics</u>, <u>surface</u> <u>plasmons</u>?
- Moving toward system-on-a-chip (SOC) on-die chipset, networking, main memory ... ?

	RAW BIT RATE	LINK BW	BW/ LANE/WAY	TOTAL BW X16
PCIe 1.x	2.5GT/s	2Gb/s	250MB/s	8GB/s
PCIe 2.x	5.0GT/s	4Gb/s	500MB/s	16GB/s
PCIe 3.x	8.0GT/s	8Gb/s	~1GB/s	~32GB/s
PCIe 4.0	16GT/s	16Gb/s	~2GB/s	~64GB/s
PCIe 5.0	32GT/s	32Gb/s	~4GB/s	~128GB/s

Conclusion

- Commodity now is different from commodity 10 or even 5 years ago.
- Moore's Law demise is being addressed with innovative new uses of transistors (SIMD, SIMT, TPU, AP, neuromorphic, etc.) and entirely new ideas: QuXXX.
- Evolutionary advances in file storage, networking, bus.
- Possibility (likelihood?) of revolution in fast non-volatile memory -> new board architectures, SOC, etc.
- Integrated systems showing much promise for supercomputers: Aurora, Summit, AMD Project 47: "Commodity" supercomputing on the way?
- Will need to think very carefully about programming / algorithms to take advantage of all this innovation: Intel TBB, C++ standard, HPX, MPI, OpenACC, OpenMP, Numpy, Julia.

