K. ZUREK

Leveraging the many faces (and phases) of matter

QUANTUM MATERIALS & DARK MATTER DETECTION

NEW DIRECTIONS IN DARK MATTER THEORY

Old paradigm: weak scale dark matter (with relic density)

fixed by freeze-out)

$$n\langle \sigma v \rangle = H(T_{fo})$$

$$\implies \langle \sigma v \rangle \simeq \frac{1}{(20 \text{ TeV})^2} \simeq \frac{g_{wk}^4}{4\pi (2 \text{ TeV})^2}$$

Kolb and Turner

DIRECT DETECTION GOLD STANDARD

 Nuclear recoil experiments; basis of enormous progress in direct detection

 $v\sim 300~{
m km/s}\sim 10^{-3}c \implies E_D\sim 100~{
m keV}$ for 50 GeV target

DARK MATTER MOORE'S LAW

Factor of 10 every 6.5 years

THEORY TARGETS

EARLY EFFORT: DAMIC CCD AT FNAL

- Detecting DM Whispers dependent on dark counts and read-out noise
- ▶ 40 eV threshold, nuclear recoils

DAMIC collaboration, 1105.5191

DIRECT DETECTION GOLD STANDARD

TOWARDS LIGHT DARK MATTER

Dark Matter May Reside in a Hidden Sector

e.g. a stable dark pion no weak force

$$\pi_v^+ \pi_v^- \to \pi_v^0 \pi_v^0$$
$$\pi_v^0 \to b\bar{b}, \ \gamma\gamma$$

NUCLEAR RECOILS

Kinematic penalty when DM mass drops below nucleus mass

$$E_D = \frac{q^2}{2m_N} \qquad q_{\text{max}} = 2m_X v$$

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 300 \text{ MeV}$$

even though
$$E_{\rm kin} \gtrsim 300~{\rm eV}$$

NEXT UP: ELECTRON

More bang for the buck if DM lighter than 1 GeV

$$E_D = \frac{q^2}{2m_e} \qquad q_{\text{max}} = 2m_X v$$

 Allows to extract all of DM kinetic energy for DM MeV and heavier

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 1 \text{ MeV}$$

ELECTRONS IN MATERIALS

In insulators, like xenon

Ionize electron

Gap = DM Kinetic Energy

In semi-conductors, like Ge, Si

Excite electron to conduction band

P. Sorensen et al 1206.2644

Essig et al 1509.01598

SENSEI AND SKIPPER CCD'S

- DAMIC utilized sensitivity to charge to place constraints on DM
- Fundamentally limited by noise
- More noise = less sensitivity to DM Whispers
- Improved Read-out

LDRD led by Javier Tiffenberg

SENSEI, 1706.00028

RMS = 0.068 e/pix

SENSEI AND SKIPPER CCD'S

QUANTUM DEVICE R&D

- In addition to suitable target (quantum phases of matter), need quantum devices capable of measuring small energy deposits
- Superconducting devices that measure single quanta
- Single infrared or microwave photon detectors, e.g. Aaron Chou LDRD

Transition Edge Sensor calorimeter

Microwave Kinetic Inductance Device

See W. Wester talk

DARK MATTER LANDSCAPE

E.G. SUPERCONDUCTORS

- Free electrons succumb to collective dynamics
- Typical gap $\Delta \simeq 0.3 \; \mathrm{meV}$

ABSORPTION — SUPERCONDUCTORS

- Can we absorb ultralight DM particles on electrons in a superconductor?
- Seems not basic energy and momentum conservation
- ▶ Take advantage of collective modes! i.e. phonons

$$\mathcal{H} = \int d^3 y_{ph} \phi \bar{\psi} \psi = \frac{1}{\sqrt{V}} \sum_{\vec{l}} \sum_{\vec{l}'} \frac{C_{ph}|Q|}{\sqrt{\rho}} \frac{1}{\sqrt{2E_Q}} (c_{\vec{Q}} + c_{-\vec{Q}}^{\dagger}) a_{\vec{k}'} a_{\vec{k}}$$

ABSORPTION — SUPERCONDUCTORS

$X \nearrow q \qquad Q \nearrow \Phi$ $\downarrow k \qquad k' \qquad e$

Dark Photon

ABSORPTION — SEMICONDUCTORS

Larger gap means sensitivity only to heavier particles ... but, there is a new process!

HELIUM

- Superfluids are naturally insensitive to noise. A good light DM detector? In the context of ordinary nuclear recoils, yes, see e.g. 1605.00694
- To detect lighter DM, couple to phonon modes.
- Viable? At first glance no

$$E_D \sim v_X q$$
vs $c_s \ll v_X$
 $E_D \sim c_s q$

Next glance -- yes!

HELIUM

- Superfluids are naturally insensitive to noise. A good light DM detector? In the context of ordinary nuclear recoils, yes, see e.g. 1605.00694
- ▶ To detect lighter DM, couple to phonon modes.
- Viable? At first glance no

$$E_D \sim v_X q$$
 vs $c_s \ll v_X$ $E_D \sim c_s q$

Next glance -- yes!

MULTI-EXCITATIONS

Calculated and observed for cold neutrons

- However, this is in a very different kinematic regime
- No existing calculations in regime of interest

Internal note, R. Golub, 1977

Beauvois et al 1605.02638

MULTI-EXCITATIONS

 emit back-to-back excitations to bleed off energy while conserving momentum

Schutz, KZ 1604.08206

Quantize the fluid Hamiltonian, like SHO

$$H_{0} = \frac{1}{2} \sum_{k} \left(\rho_{0} v_{\vec{k}} v_{-\vec{k}} + \phi(k) \rho_{\vec{k}} \rho_{-\vec{k}} \right) \qquad m_{\text{He}}^{2} S(k) = \langle \rho_{k} \rho_{-k} \rangle$$

RESULTS

Schutz, KZ 1604.08206

DARK MATTER LANDSCAPE

COMPLEMENTARITY

Cosmic Visions Whitepaper

ROAD FORWARD

 Large part depends on better energy resolution sensors (TESs or KIDs); TESs or KIDs are portable to multiple

targets

Semiconductors SuperCDMS

Current energy resolution: ~300 eV

Goal: ~1 eV

Superconductors

Goal: ~1 meV

Superfluid Helium

Goal: ~1 meV

ROAD FORWARD

- New ideas for dark matter detection!
- Moving beyond nuclear recoils into phases of matter crucial to access broader areas of DM parameter space
- Target diversity essential. graphene, superconductors, semiconductors, helium Weyl semi-metal
- Leverage progress is materials and condensed matter physics
- Realizing experimental program is 5-10+ years into future
- Nine orders of magnitude increased sensitivity in mass
- Long view necessary!