Use of NSF Supercomputers

Open Science Grid

1

Rob Gardner, University of Chicago

OSG Council, Indianapolis, October 3, 2017

Acknoweledgements !!

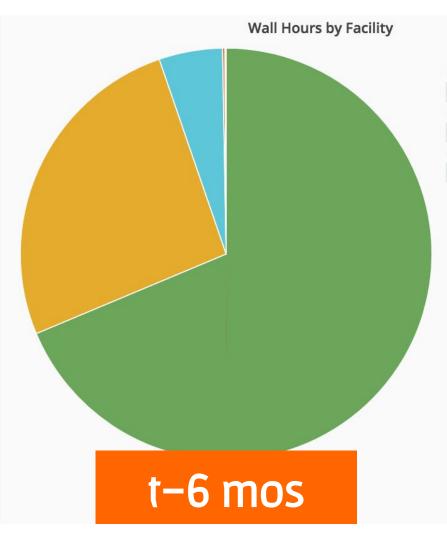
Frank Wuerthwein Edgar Fajardo Mark Neubauer, Dave Lesny & Peter Onyisi Mats Rynge Rob Quick

Goal

Standardize "the inteface" to NSF HPC resources – add them to resource pools used by OSG engaged communities

Identity & doors .. CEs .. Glideins .. Software .. Data .. Network .. Workflow .. Operations ..

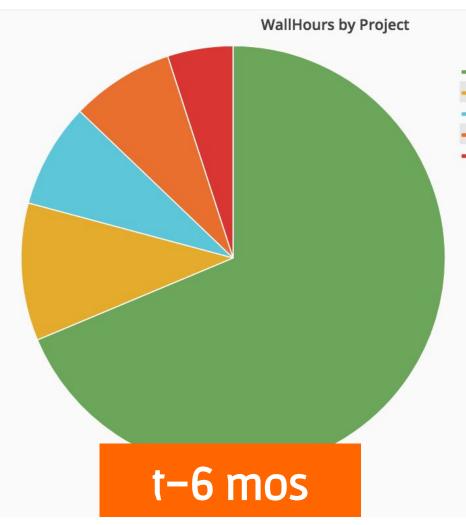
OSG -style "Science Gateways" c.f. SGCI


General Approach

-

- Use what is offerred
 - login, MFA, scheduler, platform OS, network
- Minimize footprint at the resource
 - Do as much as possible in OSG managed edge services
- Expand resource pools with NSF HPC transparently without extra work by the VO

Outline for the remainder...


- Survey of efforts
- Common challenges
- Next steps

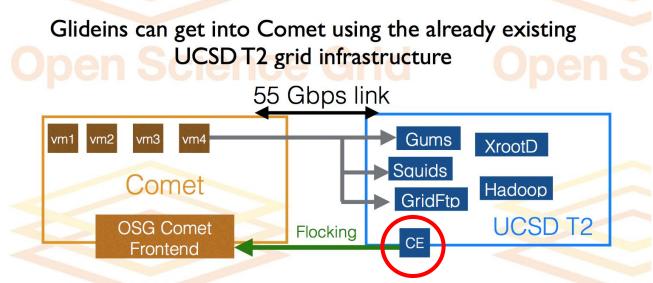
	values
 PSC_Bridges 	8677623
- Comet	3289235
T3_US_NERSC	630355
🗕 Xstream	23650
 BlueWaters 	7729
 Jetstream-CE-1 	4230

Facilities

Bridges Comet Cori **Xstream Blue Waters** Jetstream

	values
BN130001-Plus	8677623
– xenon1t	1324694
IceCube	1006296
LIGO	993855
mu2e	630355

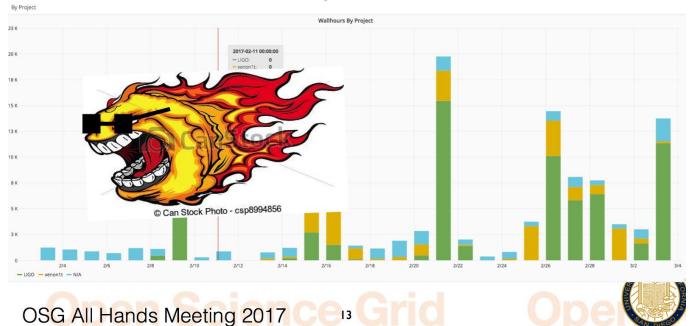
VOs


FuncNeuro XENON1T IceCube LIGO mu2e

Weurthwein

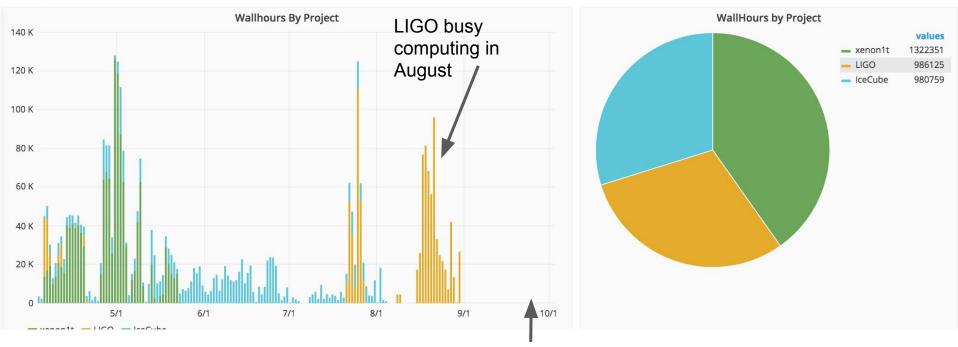
Edgar Fajardo

Where does OSG kick in?


OSG All Hands Meeting 2016 UC San Diego

Edgar Fajardo

Comet


Achievements

Successfully ran LIGO, Xennon IT, CMS Production
 and CMS UCSD user jobs in the Virtual Cluster.

Comet update

By Project

Sep 27 latest LIGO result announced

Data Access

- The most standard integration is done for Comet. There we have every node WAN accessible via IPv6, and reached via a regular OSG-CE. We even support the use of StashCache there, but I'm not sure it was used yet by the apps that have run there. CVMFS is of course also available on Comet.
 - I think both LIGO and xenon1t pull in data as needed from the worker nodes. For xenon1t this is done via gridftp, for LIGO via xrdcp, as far as I know.
- This is accomplished at Comet via its special virtual cluster interface. I.e. we effectively have root and can do whatever we want.
- BlueWaters and NERSC also offer the OASIS application environments, but not via CVMFS. BlueWaters for sure does a regular rsynch onto the parallel filesystem. Not 100% sure for NERSC.
- Jetstream offers OASIS, I think, but I'm not sure how.

Challenges: Software Distribution

- Stratum-R delivers software to Stampede
- Providing support for all the major
 OSG VOs and the
 OSG modules

login5.stampede(326)\$ II

total 80

drwxrwxr-x 5 usatlas G-815132 4096 Mar 5 2012 atlas.cern.ch drwxrwxr-x 5 usatlas G-815132 4096 Jan 18 2012 atlas-condb.cern.ch drwxrwxr-x 9 usatlas G-815132 4096 Jan 13 2014 cernvm-prod.cern.ch drwxrwxr-x 57 usatlas G-815132 12288 Oct 1 03:44 cms.cern.ch drwxrwxr-x 7 usatlas G-815132 4096 Aug 12 2014 fermilab.opensciencegrid.org drwxrwxr-x 12 usatlas G-815132 4096 Mar 31 2014 geant4.cern.ch drwxrwxr-x 44 usatlas G-815132 4096 Oct 1 14:55 grid.cern.ch drwxrwxr-x 12 usatlas G-815132 4096 Apr 24 2014 icecube.opensciencegrid.org drwxrwxr-x 5 usatlas G-815132 4096 Feb 19 2015 minos.opensciencegrid.org drwxrwxr-x 14 usatlas G-815132 4096 Feb 19 2015 nova.opensciencegrid.org drwxrwxr-x 32 usatlas G-815132 4096 May 13 2015 oasis.opensciencegrid.org drwxrwxr-x 8 usatlas G-815132 4096 Aug 18 2015 osg.mwt2.org drwxrwxr-x 5 usatlas G-815132 4096 Mar 25 2011 sft cern.ch drwxrwxr-x 28 usatlas G-815132 4096 Feb 4 2017 singularity.opensciencegrid.org drwxrwxr-x 7 usatlas G-815132 4096 Oct 31 2016 snoplus.egi.eu drwxrwxr-x 8 usatlas G-815132 4096 Sep 12 2016 spt.opensciencegrid.org drwxrwxr-x 5 usatlas G-815132 4096 Mar 29 2017 veritas.opensciencegrid.org drwxrwxr-x 6 usatlas G-815132 4096 Sep 16 2016 xenon.opensciencegrid.org those are all the repos being replicated to stampede

Stampede

Challenges: Software Distribution

- Stratum-R delivers software to Bluewaters
- IceCube recently added
- Include compat libs needed by LHC exps

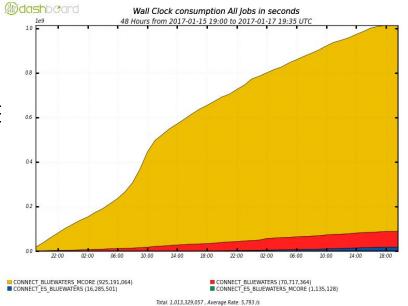
ddl@h2ologin2:~/cvmfs> ll

total 32

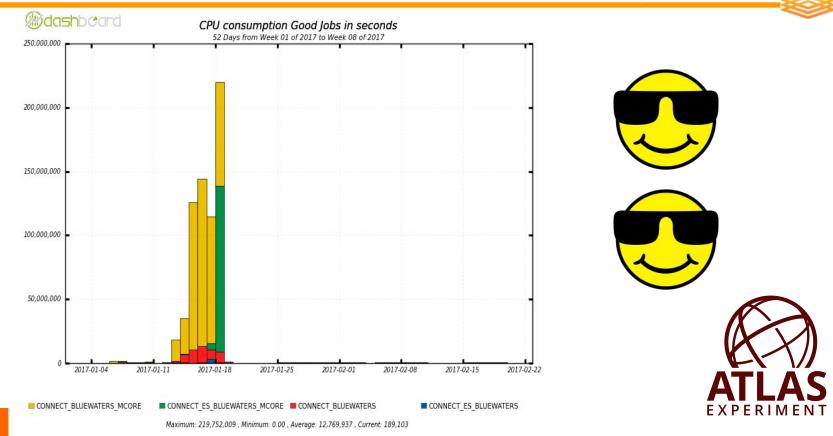
drwxrwxr-x 5 ddl ILL_bafz 4096 Nov 21 2016 atlas.cern.ch drwxrwxr-x 5 ddl ILL_bafz 4096 Aug 18 09:01 atlas-condb.cern.ch drwxrwxr-x 12 ddl ILL_bafz 4096 Jul 28 02:17 geant4.cern.ch drwxrwxr-x 44 ddl ILL_bafz 4096 Jul 20 00:43 grid.cern.ch drwxrwxr-x 11 ddl ILL_bafz 4096 Sep 1 15:56 icecube.opensciencegrid.org drwxrwxr-x 32 ddl ILL_bafz 4096 Jan 15 2017 oasis.opensciencegrid.org drwxrwxr-x 8 ddl ILL_bafz 4096 Jul 23 09:16 osg.mwt2.org drwxrwxr-x 5 ddl ILL_bafz 4096 Dec 9 2016 sft.cern.ch

Blue Waters

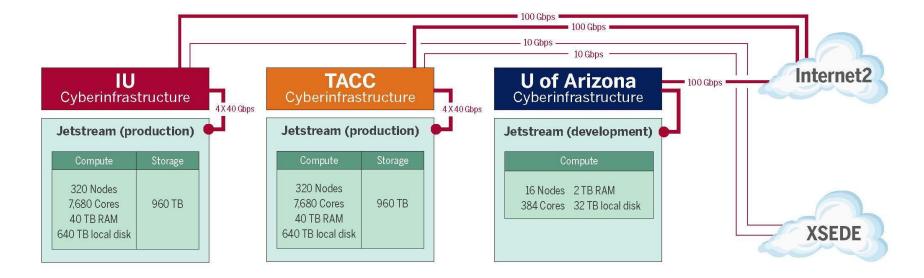
PanDA Queues setup


Gardner, Lesny, Neubauer

Blue Waters


• 4 Panda (general) Production Queues

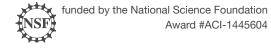
- CONNECT_BLUEWATERS
- CONNECT_BLUEWATERS_MCORE
- CONNECT_ES_BLUEWATERS
- CONNECT_ES_BLUEWATERS_MCORE
- No restriction on tasks or releases
- Each queue configured for BW
 - LSM transfer
 - Standard: 36H guaranteed
 - ES: 4H guaranteed up to 36H max
 - 4H jobs fill in scheduling holes

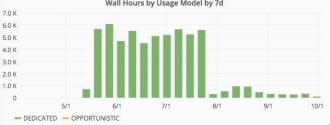


PanDA CPU provided by Blue Wate

Gardner, Lesny, Neubauer

Jetstream System Overview




OSG and Jetstream

- Running on a few cores consistently Since May.
- Most effort has been in how to how to efficiently expand/contract the size of th pool.
- This is very close, two tasks left.
 - Update webhooks code to provide unique instance names.
 - Plug in webhooks to scale to the number of instances based on idle nodes.

OSG on etstream

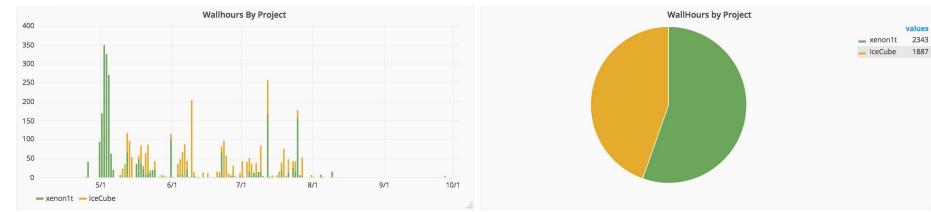
Edgar Fajardo

Initial configuration attempts to follow standard OSG model.

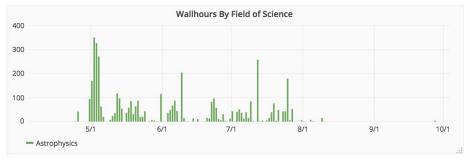
- Glidein submission to an HTCondor-CE
- Local HTCondor Pool
 - Schedd + Central Manager running on same VM as CE
- Other supporting services: Squid, etc.

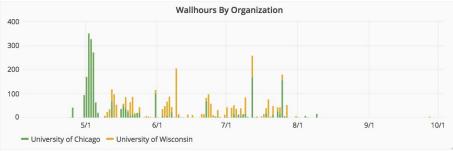
Developing **bootstrapping script(s)** to automate image builds and configuration, which should help facilitate long-term/shared management of site.

Some cloud-related configuration issues:

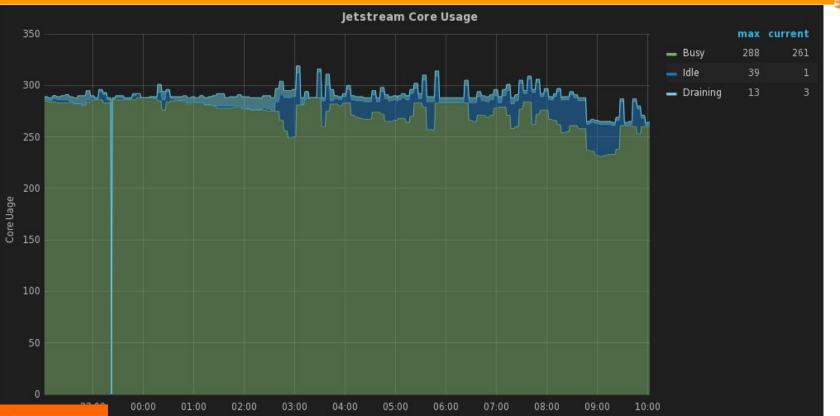

- Public/private network interfaces.
- Multiple public/private hostnames per network interface; e.g., Openstack's Nova (compute) and Neutron (networking) services do not share consistent hostnames by default.

Unknown: How to advertise size of available pool?


20


OSG All Hands Meeting 2017

✓ By Field Of Science



JetStream via CONNECT

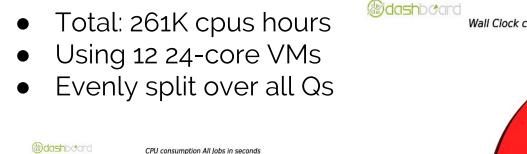
Lesny, Onyisi

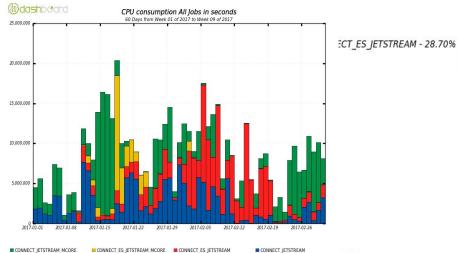
- Jetstream is just another target site for CONNECT
 - VMs reside in a Condor pool with SCHEDD on utatlas tier3 login node
- CONNECT submits SSH Glideins into this pool
 - Each glidein requests the whole VM (24 cores, 48GB memory)
 - Allows Connect to do its own scheduling, matchmaking, classads
 - PortableCVMFS brought into the VM (which has fuse)
 - Docker image has all other Atlas dependencies
- PanDA access via CONNECT AutoPyFactory
 - CONNECT_JETSTREAM, CONNECT_JETSTREAM_MCORE
 - CONNECT_ES_JETSTREAM, CONNECT_ES_JETSTREAM_MCORE

JetStream Cores via CONNECT

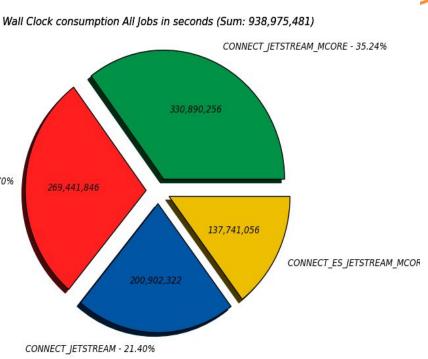
21

Jetstream


Lesny, Onvisi


Lesny

JetStream PanDA (January 1, 2017 to March 6, 2017)


Jetstream

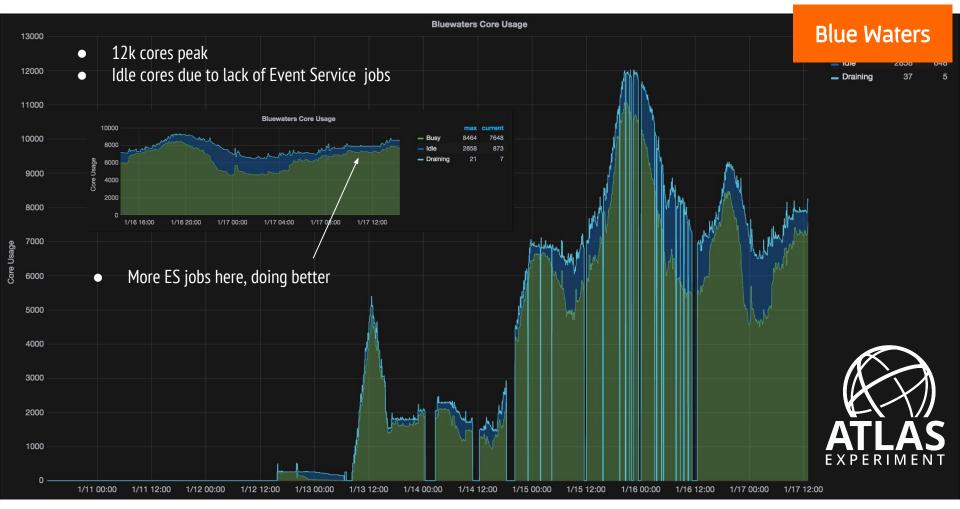
Lesny, Onyisi

Maximum: 20,401,455 , Minimum: 1,081,433 , Average: 8,594,837 , Current: 8,137,628

CONNECT_JETSTREAM_MCORE - 35.24% (330,890,256)
 CONNECT_JETSTREAM - 21.40% (200,902,323)

CONNECT_ES_JETSTREAM - 28.70% (269,441,846)
 CONNECT_ES_JETSTREAM_MCORE - 14.67% (137,741,056)

Neubauer


Summary

- Our goal is to standardize interfaces to NSF supercomputers & OSG HTC for existing VOs
 - Overlay scheduling (using the OSG CE)
 Hosted CEs
 - Software delivery (either containers or CVMFS modules)
 - Data delivery (StashCache)
- Near term: focus on Stampede2
 - Discussing with TACC a 2FA equivalent (key+subnet)
 - Hosted CE w/ extensions to individual logins for accounting for hosted HTCondorCE-Bosco

some details

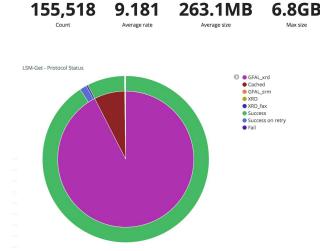
Blue Waters Glideins

Gardner, Lesny, Neubauer

• Local Scheduler: PBS

- Requires multiple nodes reservation per job: Currently requesting 16
- Each node 32 cores, 64 GB, no swap => use only 16 cores to avoid OOM
- GSISSH based Glidein (Connect Factory)
 - Authorization: One Time Password creates proxy good for 11 days
 - Glidein requests 16 nodes and runs one HTCondor overlay per node
 - Requests Shifter usage with a Docker Image from Docker Hub
 - HTC overlay creates 16 partitionable slots with 16 cores per slot
 - Connect AutoPyFactory injects pilots into these slots which run on BW
 - Glidein life is 48 hours and will run consecutive Atlas jobs in the slots
 - Need a mix of standard and Event Service jobs to minimise idle cores

Neubauer & Lesny


Blue Waters Data Transfer

Gardner, Lesny, Neubauer

• BW nodes have limited access to WAN

- Number of ports available to outside is restriction
- Ports needed for HTC overlay and stagein/out of data
- "Local Site Mover" (lsm-get, lsm-put)
 - Using MWT2 SE as storage endpoint
 - Transfer utility is gfal-copy, root://, srm:// or Xrootd; retries with simple backoff and protocols change on failure; pCache (WN cache) used by lsm-get to help reduce stagein of duplicate files
 - I/O metrics logged to Elastic Search

Neubauer & Lesny

Blue Waters Glideins

Gardner, Lesny, Neubauer

• Local Scheduler: PBS

- Requires multiple nodes reservation per job: Currently requesting 16
- Each node 32 cores, 64 GB, no swap => use only 16 cores to avoid OOM
- GSISSH based Glidein (Connect Factory)
 - Authorization: One Time Password creates proxy good for 11 days
 - Glidein requests 16 nodes and runs one HTCondor overlay per node
 - Requests Shifter usage with a Docker Image from Docker Hub
 - HTC overlay creates 16 partitionable slots with 16 cores per slot
 - Connect AutoPyFactory injects pilots into these slots which run on BW
 - Glidein life is 48 hours and will run consecutive Atlas jobs in the slots
 - Need a mix of standard and Event Service jobs to minimise idle cores

Neubauer & Lesny