
Scripts, Modules and
Variables
Fermilab - TARGET 2017
Week 2

#!/usr/bin/python
import os
import sys
import string
import optparse
...
from glideinwms.lib import condorExe
Main function
def main(argv):
 feconfig=frontenvparse.FEConfig() # FE configuration holder
 … # parse arguments
 feconfig.config_optparse(argparser)
 (options, other_args) = argparser.parse_args(argv[1:])

 if len(other_args)<1:
 raise ValueError, "Missing glidein_name"
 glidein_name = other_args[0]
 if len(other_args)>=2:
 log_type=other_args[1]
 else:
 log_type="STARTD"
 ...
 return 0
S T A R T U P
if __name__ == '__main__':
 try:
 sys.exit(main(sys.argv))
 except Exception, e:
 sys.stderr.write("ERROR: Exception msg %s\n"%str(e))
 sys.exit(9)

Import statements
to use other modules

__main__
Value of __name__ when
this is invoked as a script
(as alternative could be
imported)

Block
Groups together a list of
statements
4 spaces indentation!

Function
Gives a name to a block of
code and hides variables

Outside statements
Executed when running the
script

Comments
Starting with #

Python script

#! - shebang
Indicates which interpreter
can run the script

Structuring files

Module - single file of Python code (definitions and statements) that is meant
to be imported

Package - collection of Python modules under a common namespace.
In practice one is created by placing multiple python modules in a directory
with a special __init__.py module (file)

Library - generic term for code that was designed with the aim of being usable
by many applications. PYTHONPATH lists known libraries.

Standard library - collection of exact syntax, token and semantics of the Python
language which comes bundled with the core Python distribution (>200
modules)

Variable

Variables are used to store
information to be referenced and
manipulated in a computer program

Variables have a name, value,
representation, a type

Variables scope and lifetime

Scope - part of a program where a variable is accessible

Lifetime - duration for which the variable exists

Global variable - defined in the main body of a file
It will be visible throughout the file, and also inside any file which imports that file.

Local variable (to a function) - defined inside the function
It is accessible from the point at which it is defined until the end of the function, and exists for as long
as the function is executing.

This is a global variable
a = 0

if a == 0:
 # This is still a global variable, becomes alive only if a is 0
 b = 1

def my_function(c):
 # This is a local variable
 d = 3
 print(c)
 print(d)
 # This is a local variable too, hiding the global a
 a = 5
 print(a)

Now we call the function, passing the value 7 as the first and only parameter
my_function(7) # This prints 7, 3, 5

a and b still exist
print(a) # This prints 0, the value of the global a
print(b)

c and d don't exist anymore -- these statements will give us name errors!
print(c)
print(d)

Error!
You cannot refer
(local) variables
outside their scope

Global Variables
Defined outside: a, b

Local variables
To my_function: c, d, a

Variable lifetimes and scopes, an example

Lifetime (memory used)
a b c d a(loc)

Scope (name can be used)
 a b c d a(loc)

Knowing how to code may come handy...

Remember to choose a project for your presentation!

Here a creative example of someone using coding abilities to solve a problem

Project Mayhem writing some code to fight fake IRS phone scam:

https://www.youtube.com/watch?v=EzedMdx6QG4

