
Programming Styles and
Objects
Fermilab - TARGET 2017
Week 3

Programming styles

Imperative programming

- Procedural programming
- Object oriented programming

Declarative programming

- Database languages (Structured Query Language)
- Functional programming
- Logical programming

Structured Query Language (SQL)

Create and manipulate tables of
Data

SELECT CustomerName, City FROM Customers WHERE Country='Mexico';

UPDATE Supplier SET City = 'Sydney' WHERE Name = 'Pavlova, Ltd.'

DELETE FROM Product WHERE UnitPrice > 50
INSERT INTO Customer (FirstName, LastName, City, Country, Phone)

SELECT LEFT(ContactName, CHARINDEX(' ',ContactName) - 1),

 SUBSTRING(ContactName, CHARINDEX(' ',ContactName) + 1, 100),

 City, Country, Phone

 FROM Supplier

WHERE CompanyName = 'Bigfoot Breweries'

Complex
command
example

Functional programming

Evaluates mathematical functions and avoids changing-state and mutable data

Functions always return
the same value

Variables don't change value

Is programming without
assignment statements

from random import random

def move_cars(car_positions):
 return map(lambda x: x + 1 if random() > 0.3 else x,
 car_positions)

def output_car(car_position):
 return '-' * car_position

def run_step_of_race(state):
 return {'time': state['time'] - 1,
 'car_positions': move_cars(state['car_positions'])}

def draw(state):
 print ''
 print '\n'.join(map(output_car, state['car_positions']))

def race(state):
 draw(state)
 if state['time']:
 race(run_step_of_race(state))

race({'time': 5,
 'car_positions': [1, 1, 1]})

Logic programming

Programming based on the notion of logical deduction in symbolic logic

Facts

Rules

Queries

Elementary, my dear Watson!

child(Pebbles,Fred)
child(Pebbles,Wilma)
child(Wilma,Freds-mother-in-law) (what's her name?)
child(Bam-bam,Barney)
child(Bam-bam,Betty)

descendent(A,B) := child(A,B)
descendent(A,B) := exists(x : child(A,x) && descendent(x,B))

child? (Pebbles,Fred) -> True
child? (Pebbles,Barney) -> False (at least Fred hopes not!)
descendent? (Pebbles,Fred) -> True
descendent? (Pebbles,Freds-mother-in-law)? True
descendent? (Pebbles,Barney) -> False

Imperative programming

Give ordered commands to the
computer, statements

Maintain the status in variables
that can change value

Procedural language because the code is
organized in procedures:
 - blocks
 - functions
 - modules
 - packages

#!/usr/bin/python
import os
import sys
import string
import optparse
...
from glideinwms.lib import condorExe
Main function
def main(argv):
 feconfig=frontenvparse.FEConfig() # FE configuration holder
 … # parse arguments
 feconfig.config_optparse(argparser)
 (options, other_args) = argparser.parse_args(argv[1:])

 if len(other_args)<1:
 raise ValueError, "Missing glidein_name"
 glidein_name = other_args[0]
 if len(other_args)>=2:
 log_type=other_args[1]
 else:
 log_type="STARTD"
 ...
 return 0
S T A R T U P
if __name__ == '__main__':
 try:
 sys.exit(main(sys.argv))
 except Exception, e:
 sys.stderr.write("ERROR: Exception msg %s\n"%str(e))
 sys.exit(9)

Objects (Object Oriented Programming)

Object: Data and methods to manipulate it together as one unit

Class: blueprint to create an object (mold)

Some important properties:
- Abstraction
- Encapsulation
- Polymorphism
- Composition
- Inheritance
- Delegation

OOP concepts

1 .Polymorphism : The process of representing one form in multiple forms is
known as Polymorphism.

Suppose if you are in class room that time you behave like a student, when you are in market at that
time you behave like a customer, when you at your home at that time you behave like a son or
daughter, Here one person present in different-different behaviors.

2. Abstraction : Abstraction is the concept of exposing only the required
essential characteristics and behavior with respect to a context.

Abstraction shows only important things to the user and hides the internal details, for example, when
we ride a bike, we only know about how to ride bikes but can not know about how it work? And also we
do not know the internal functionality of a bike.

Abstraction is ATM Machine; All are performing operations on the ATM machine like cash withdrawal,
money transfer, retrieve mini-statement…etc. but we can't know internal details about ATM.

OOP concepts (cont)

3. Encapsulation = Data Hiding + Abstraction.

Looking at the example of a power steering mechanism of a car. Power steering of a car is a complex
system, which internally have lots of components tightly coupled together, they work synchronously to
turn the car in the desired direction. It even controls the power delivered by the engine to the steering
wheel. But to the external world there is only one interface is available and rest of the complexity is
hidden. Moreover, the steering unit in itself is complete and independent. It does not affect the
functioning of any other mechanism.

4. Inheritance - Something received from the previous holder

Father gives his property to child , father got that properties from child’s grandfather , so child is the
taker and father is giver , hence father works as a base class and child as derived class

Object Oriented Programming - Classes definition in shapes.py
class Canvas:
 def __init__(self, width, height):
 self.width = width
 self.height = height
 self.data = [[' '] * width for i in range(height)]

 def setpixel(self, row, col):
 self.data[row][col] = '*'

 def getpixel(self, row, col):
 return self.data[row][col]

 def display(self):
 print ("\n".join(["".join(row) for row in self.data]))

class Shape:
 def paint(self, canvas): pass

class Line(Shape):
 def __init__(self, x1, y1, x2, y2):
 self.x = x1
 self.y = y1
 self.w = x2 - x1
 self.h = y2 - y1

 def paint(self, canvas):
 ratio = self.w / self.h
 if self.w >= self.h:
 for i in range(self.h):
 canvas.setpixel(self.x+int(i*ratio), self.y+i)
 else:
 for i in range(self.w):
 canvas.setpixel(self.x+i, self.y+int(i/ratio))

Continues on next column ...

… Continues from previous column
class Rectangle(Shape):
 def __init__(self, x, y, w, h):
 self.x = x; self.y = y; self.w = w; self.h = h

 @staticmethod
 def hline(x, y, w, canvas):
 i = 0
 while i <= w:
 canvas.setpixel(x+i, y); i += 1

 @staticmethod
 def vline(x, y, h, canvas):
 i = 0
 while i <= h:
 canvas.setpixel(x, y+i); i += 1

 def paint(self, canvas):
 self.hline(self.x, self.y, self.w, canvas)
 self.hline(self.x, self.y + self.h, self.w, canvas)
 self.vline(self.x, self.y, self.h, canvas)
 self.vline(self.x + self.w, self.y, self.h, canvas)

class Square(Rectangle):
 def __init__(self, x, y, size):
 Rectangle.__init__(self, x, y, size, size)

class CompoundShape(Shape):
 def __init__(self, shapes):
 self.shapes = shapes

 def paint(self, canvas):
 for s in self.shapes:
 s.paint(canvas)

Canvas class
Defines a frame
buffer

Child
Inherits from Shape,
implements paint()
and the constructor
__init__() Composition

Uses shapes and that all
Shapes can paint

Shape class
Abstract base class for
shapes. All Shapes
can paint themselves
on a canvas

Inheritance
Tree of shapes

Shape

Square

RectangleLine Composite

Inheritance (2)
Square is a Rectangle with
height = width
Gets paint() from Rectangle

Object Oriented Programming - Using classes (defined in shapes.py)

Import shapes
All classes are defined in
the module shapes.py

Import all the shapes
from shapes import *

Create a canvas
mycanvas = Canvas(20, 20)

Draw a rectangle, a square and a line on the canvas
r1 = Rectangle(2, 3, 4, 5)
s1 = Square(4,4,6)
l1 = Line(5, 2, 15, 15)
shapes = [r1, s1, l1]
c1 = CompoundShape(shapes)
c1.paint(mycanvas)

Show the result
mycanvas.display()

Instantiate the shapes
Creating objects from all the
shapes
Using the CompoundShape
to paint all at once on
mycanvas
NOTE how you use the
objects (casts). The classes
(molds) are used only to
instantiate new objects

Instantiate a Canvas
Creating an object of class
(type) Canvas, a frame buffer

Display the result
The Canvas mycanvas is
printed on the screen

X

y

