

Python in NEXT Experiment

MAYA CHATTORAJ

NEXT Experiment

- Are neutrinos their own anti-matter?
- If yes- two neutrinos cancel each other out
- How to see: double beta decay

Double Beta Decay

- Two neutrons two protons
- Ordinary: two electrons, two electron antineutrinos emitted
- Neutrinoless: only two electrons emitted
- Neutrinos annihilate each other

NEXT Experiment

- Detector filled with pressurized Xenon gas
- Located underground in Spain:
 Laboratorio Subterráneo de Canfranc (LSC)
- Tracks path & energy of electron(s)

Detector Performance Simulation

- Experiment has not run yet
- Simulations of performance are created
- Used to study predicted results

Signal & Background Events

- Two types of events detected
- Signal: double beta decay
- Background: some other reaction
- Sort between events to find signals

Using Python to Analyze Data

- Easy to understand
- Powerful tools
- Many libraries available
- Online help

3D Plot of Events

Signal Event

- Lose energy path curls
- Lose more energy at ends
- End of tracks are blob-like
- Two electrons, two blobs

Background Event

- Only one electron (not what we're looking for)
- One 'blob' at end
- Sort out from signal events

Display of Electrons' Energy

- Originally shown by size of point
- Distorts track, hard to follow
- Use color instead

Colormapping

Scale energy values with color

Signal Event with Colorscale

Background Event with Colorscale

Initial Scan & Classification

- Go through signal and background events
- Give a score 0-10
- 0: background
- 10: signal
- Write into text file

```
for file in nlist[first ev:]:
if scan_type != 'blind':
     count += 1
     print 'Event', count
     table = np.loadtxt(file)
     total energy = draw(table)
#Classification
classified_files = open(fileout, 'a') #appends existing file or creates new
classif = input("Classify (0 background - 10 signal): ")
cl = " event: {0} score: {1} energy: {2} MeV \n\n".format(count, classif, total energy)
fout = file + "\n scanner: " + scanner name + cl
print fout
classified_files.write(fout)
 classified files.close()
             data/nexus/Background/ttAdam nexus NEW AllBackground 2300keV 0.lis ev 1211
              scanner: Maya event: 232 score: 0 energy: 2.32998033 MeV
             data/nexus/Background/ttAdam_nexus_NEW_AllBackground_2300keV_0.lis_ev_1212
              scanner: Maya event: 233 score: 0
                                                     energy: 2.614504205 MeV
             data/nexus/Background/ttAdam_nexus_NEW_AllBackground_2300keV_0.lis_ev_1213
              scanner: Maya event: 234 score: 2 energy: 2.44653761 MeV
             data/nexus/Background/ttAdam_nexus_NEW_AllBackground_2300keV_0.lis_ev_1214
              scanner: Maya event: 235 score: 2 energy: 2.614504439 MeV
```

Plot Results of Scan

- Read text file with scores
- Parse scores and event types
- Plot results of score accuracies

View Misclassified Events

- Go through score text files
- If score doesn't match event type, view event
- Identify misleading characteristics of events

Cut-off Events

- Sections of event are missing
- Too close to sides of detector
- Alters classification

Identify Cut-off Events

- Where in the detector is the event?
- Create image of detector with event inside

Full Display of Event Info

- 3D event plot
- Energy-color scale
- Location of event within detector
- Other information (text)

x (mm)

Eliminate Cut-off Events

- Go through coordinates
- Points too close to sides of detector- skip event

Scattered Events

- Random points far from actual event
- Hard to see the event
- Can't accurately give a classification

Eliminate Scattered Events

- Calculate distances between points
- Find points far from main event
- If present, skip event

Minimum Spanning Tree

- Maps shortest path between all points
- Look through all segments
- If above certain length, skip event

Second Scan & Scoring of Events

- "Bad" events are now eliminated
- Able to more accurately classify events
- Results show high improvement

Future Ideas/Plans

- Zoom in on event track
- Simulate efficiency of detector
- Automatically sort events based on features
- Who knows??

