## 3D-IC technology trends and current development status for the stacked pixel detectors

Makoto Motoyoshi

**Tohoku-MicroTec** 

# Outline

### 1. Introduction

- Advantages of 3D-LSI
- Road Map/Potential Application

### 2. Technology Approach

- TSV process
- Bond/Stack approaches
- Examples of 3D integration
- 3. Pixel detectors
  - Background
  - Au cone bump using NpD method
  - Cylinder Bump for fragile semiconductor material
- 4. 3D Cost reduction approach
- 5. Summary

# LSI Technology $\rightleftharpoons$ 3D-IC Technology

- Predictable
- Precisive but inflexible

- unpredictable
  - Application driven technology
- Need flexibility System technology Many integration methods

## **3DIC Supply chain**

#### **Base devices**

4 inch Si wafer 6 inch Si wafer 8 inch Si wafer 12 inch Si wafer Shuttle service (LSI Chip) Compound Semiconductor (Chip/Wafer)

3D integration

## **Unique Points of 3D-LSI**



- **1. Increase of electrical performances**
- 2. Increase of circuit density
- 3. New Architecture (Hyper-parallel processing, Multifunction, etc)
- 4. Heterogeneous integration
- 5. Better yield

#### **TSV: Through Silicon Via**

#### Chip & System Integration Trends for better PPA & System Performance



Source: Cliff Hou (TSMC), ISSCC 2017 (Plenary)

### **Key technologies of 3D-IC Integration**



### **TSV process classification**



## Wafer Bonding Methods -1



## Wafer Bonding Methods -2



(Hybrid bonding)

### Various types of 3D-IC Integration

|              |      | Via first  | Via middle                   | Via last                                         |                              |                 | sno                 |
|--------------|------|------------|------------------------------|--------------------------------------------------|------------------------------|-----------------|---------------------|
| Stack Hopess |      | before MOS | before Metal<br>interconnect | after BEOL<br>before Stack                       | after Stack                  | Process<br>cost | erogenee<br>gration |
| Approach War |      | Poly-Si    | W, Cu                        | W, Cu, etc                                       | W, Cu, etc                   |                 | Hete<br>Inte        |
| WoW          | Bulk | MEMS       | 3D DRAM<br><b>3D Flash</b>   | Image Sensor                                     | Ziptronix<br>IMEC<br>Samsung | Low             | Impossible          |
|              | SOI  |            |                              | T-Micro<br>etc.                                  | MIT(Lincoln Lab.)<br>RPI     |                 |                     |
| CoW          |      | MEMS       |                              | -Heterogeneous<br>Integration<br>-Pixel detector |                              | Low~<br>Middle  | possible            |
| CoC          |      | MEMS       | 3D DRAM<br><b>3D Flash</b>   |                                                  | T-Micro<br>etc.              | High            | possible            |

### **Yield loss by particles**



### **Yield loss by particles**



We can only detect this failure from electrical testing.

### **Yield loss by particles**





If the bonding method which needs microscopic smoothness and cleanliness, bonding yield will be affected by defect density of dusts and particles. So we have chosen the bump bonding with adhesive injection.

### **T-Micro** Issue of wafer to wafer bonding

(1) Shift of wafer size after wafer process



D1≠D1'≠D1" wafer process

(2) Alignment error of wafer process





### HBM (High Band Width Memory)

#### **Commercialized 3D DRAM**



Source: Kyomin Sohn (Samsung), ISSCC2016

### **Cross-sectional View and Chip Photo of HBM**

- Process: 20nm DRAM .
- Capacity: 9Gb/core die .
- Supply voltage: 1.2V/1.2V/2.5V •
- Chip size: 12mm x 8mm (buffer die) .









### Comparison table of GDDR5 and HBM Gen1.2

| Items                                        | GDDR5               | HBM Gen1          | HBM Gen2                                                                                |
|----------------------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------------------|
| Pin Data Rate                                | 4~8Gbps             | 1Gbps             | 2Gbps                                                                                   |
| # of IO and CH                               | 1CH, 32 IO          | 8CH, 128IO/CH     | 16pCH, 64IO/pCH                                                                         |
| Bandwidth                                    | 16~32GB/s           | 128GB/s           | 256GB/s                                                                                 |
| Voltage<br>(VDDC/VDDQ/VPPE)                  | 1.35V~1.5V          | 1.2V/1.2V/2.5V    | ÷                                                                                       |
| Interface                                    | POD<br>(VDDQ Term.) | CMOS<br>(Un-term) | ÷                                                                                       |
| Banks                                        | 4banks/BG, 4BGs     | ÷                 | ÷                                                                                       |
| Implemented<br>new functions<br>in this work |                     |                   | Pseudo channel,<br>2H/4H/8H,<br>ECC storage,<br>Implicit pre-charge,<br>Lane remapping, |

Source: Kyomin Sohn (Samsung), ISSCC2016

### SK Hinix/ 3D DRAM

### (High Bandwidth Memory: HBM)



### Sony / 3D-Stacked Image Sensor

### Sony's first CIS module(IMX260) product with Cu-Cu Hybrid bonding



3um wide 14um pitch



3um wide 6um pitch





#### Source: T. Haruta (Sony) ISSCC2017

## **ITRS Road Map of TSV**





Low-power & highbandwidth 3D Memory &Logic

Memory Density: >10TB TSV length: <10um TSV diameter: 0.5um

TSV is a leading-edge technology for new generation memory. TSV scaling and increase I/O density are required for future 3D-ICs

### **High Density Memory Systens using Si Interposer**



# *T-Micro* AMD reveals HBM-powered Radeon Fury graphics cards,

### new R300-series GPUs



 ✓ Memory Bandwidth ; 512GB/s

### Monolithic 3D IC with FinFET Fabricated by Laser Anneal



Source: Chih-Chao Yang (NDL, Taiwan), IEDM2016

### Monolithic 3D IC by Wafer Level Sequential Integration



#### Source: H. Metras (Leti), 3D-ASIP2014



Monolithic 3D-IC with vertical TFT

## **Toshiba : Flash Memory**





Source: R. Yamashita (Western Digital/Toshiba) ISSCC 2017

### **Highly Integrated Heterogeneous 3D Integrated System**



### **Fine Pitch TSV**



### Novel Hybrid Bonding Features for Ultra-high Density 2.5D/3D Integration



Novel hybrid bonding technology with unique features of (1) shallow extruded electrode (bump-less), (2) thin metal capping layers, and (3) unique adhesive layer for ultra-high density 2.5D/3D integration by avoiding critical issues of current standard hybrid bonding technology

July 4th, 2017 @iWoRiD2017

### **Fine Pitch TSV**



### Photograph of 300mm FPGA TEG Modules Fabricated by Multichip-to-Wafer 3D Stacking



## **Contents**

- 1. Background
  - -Target device

-Previous work

- 2. Au cone bump using NpD method
- 3. Cylinder Bump for fragile semiconductor material
- 4. 3D Cost reduction approach
- 5. Summary

NpD: Nano-particle deposition

## **Target device**

### **3D Stacked Pixel Detector**



### 3D heterogeneous stacked X-ray / IR pixel sensor





### **Stacked SOI Pixel detector**



## Pixel array using Indium micro-bump



**T-Micro**
## 2. Au cone bump using NpD

### **T-Micro** Nano-particle Deposition (NpD) System



#### Courtesy of Mixnus Fine Engineering Co., Ltd

### Au Cone bump formation



July 6, 2017 @ Fermi Lab.

## Pros & cons of Au cone bump

### Pros - good scalability

-bump size and height are only determined by lithography process





## Pros & cons of Au cone bump

**Pros**(Continue)



- low temperature process less

less than 200 °C → 150°C (present) → 120°C (Target)

## Pros & cons of Au cone bump

### Cons

- low throughput Current process time for 5mm x 5mm chip is around 1hour



An improvement of deposition speed is now in progress



Prototype NpD machine

Nano particle transport tube

Deposit Np on the inside wall of the tube

## Pros & cons of Au cone bump

### Cons

- low throughput Current process time for 5mm x 5mm chip is around 1hour



An improvement of deposition speed is now in progress



Prototype NpD machine





## 2.5/5.0µmφ Au Cone Bump



## **Process flow for SOI Pixel detector(1)**

< Lower Tier >

### < Upper Tier >



### *T-Micro* After cone bump formation (@ pixel array area)



### **Process flow for SOI Pixel detector(2)**

< Lower Tier >

### < Upper Tier >



July 6, 2017 @ Fermi Lab.

### **Process flow for SOI Pixel detector(2)**



### **T-Micro** Cross section of Au cone bump junction



# X-ray CT Image



# **Bump resistance**





# **Stress evaluation**

Evaluate the fluctuation of SOI-MOS Transistor caused by the stress of bump bonding

Device dimension N/P MOS Transistor W/L=2/0.2um



### SOI PMOS- $I_{DS}$ vs $V_{DS}$ Characteristics



## SOI-NMOS $I_{DS}$ vs $V_{DS}$ Characteristics





# Material cost of Au bump



July 6, 2017 @ Fermi Lab.

# **Cylinder Bump for fragile material**

### CdTe surface after CdTe/Si-ROIC bonding with Au bump



### **Bump bonding with cylinder Au bumps**



### **Bump bonding with cylinder Au bumps**







**T-Micro** 

## SEM cross sectional view



# Process cost reduction for the Heterogeneous Integration

# **3D stack approaches**

|                                           | CtC                                   | CtW             | WtW                                                                                     |
|-------------------------------------------|---------------------------------------|-----------------|-----------------------------------------------------------------------------------------|
|                                           | (chip to chip)                        | (chip to wafer) | (wafer to wafer)                                                                        |
|                                           | stack                                 | dicing          | dicin                                                                                   |
| Process cost                              | High                                  | High ~ Middle   | Low                                                                                     |
| Stack chips with different chip size      | possible                              | possible        | Impossible                                                                              |
| Chip alignment<br>accuracy<br><0.5μm (3σ) | Difficult from economical stand point |                 | possible ?                                                                              |
| Miscellaneous                             |                                       |                 | Need high yield wafers<br>Y <sub>total</sub> =Y <sub>w#1</sub> x·····x Y <sub>w#n</sub> |
|                                           |                                       |                 | Need same size wafers                                                                   |

Need a high speed COW technique with the high alignment accuracy and the practical process cost

## **Economy of 3D LSI manufacturing**

### (a) Current 3D Production





## "Super Chip" Self-assembly Technique



## Self-assembly technique

### observe from direct above



## Self-assembly technique



### Self-Assembly Event observation using a High-Speed Camera



July 6, 2017 @ Fermi Lab.

## Self-assembly technique



### **New Reconfigured Wafer-to-Wafer 3D Integration**



July 6, 2017 @ Fermi Lab.

# *T-Micro* <u>Self-Assembly & Electrostatic (SAE) Bonding</u>

















# Summary

- 1. The recent 3D-IC trends and with TSV were described.
- 2. Advantages of 3D-LSIs are
  - (a) Increase of electrical performances
  - (b) Increase of circuit density
  - (c) New Architecture (Hyper-parallel processing, Multifunction, etc)
  - (d) Heterogeneous integration
  - (e) Cost reduction
- 3. Many 3D-Integration approaches have been reported. Considering supply chain of the base LSIs and variety of applications, it is difficult to unify.
- 4. 3D LSI Integration technology using 2.5μmφ Au cone bump is verified using SOI stacked pixel detector as circuit level test device.
- 5. 3.5μmφ Au cylinder bump for soft & fragile material, such as CdTe, is developed.
- 6. We confirmed that the CtW approach with a self-assembly-lump bonding technique will be effective for cost reduction.