Z-Slicer Simulations for terahertz radiation experiments at FAST

Jibong Hyun (graduate student @KEK)
Tanaji Sen
Jayakar C. Thangaraj

Our purpose

Our goal is

to generate ~1 THz radiations with slits in chicane

Today's topics

- 1. Beam optics for THz radiations
- 2. Expected electron bunches and frequencies

THz radiations

Many THz sources using accelerated electron beams have been proposed and developed.

→ CSR, smith-purcell radiation and transition radiation...

To generate THz waves, longitudinal bunch length should be compressed to be < 0.3 mm. (→ broadband)

Narrow band THz waves require a short period bunch structure.

- \rightarrow we use a micro-bunch beam.
 - + energy chirped beam chicane

How to make micro-bunch beams

- 1 Energy chirped electron beam after a cavity.
- 2 Separated in x (energy) plane using slits in chicane.
- 3 De and over compression to reduce overlaps between micro-bunches.

Key points for a micro-bunch beam (longitudinal separation)

- Low uncorrelated and high correlated energy spreads for large chirped beam with no overlaps between micro-bunches.
- Low emittance beam.

Simulation parameters

- •Normalized emittance \rightarrow 5x10⁻⁶ m rad (for 50 pC last summer)
- Beam energy after RF gun → 5 MeV
- •Rms uncorrelated energy spread after RF gun→ 0.1 % (5 keV) (comes from measurements at FLASH.
- Max. accelerating gradients of CC1 and CC2 \rightarrow 16 and 20 MeV/m

RF phases for energy chirped beams

-40 deg.< RF phase < 40 deg.

(Assumed no chirp from RF gun cavity)

1. CC1 off-crest and CC2 on-crest

 $\theta 1 = -, + 35.4 \text{ deg. and } \theta 2 = 0 \text{ deg.}$

 \rightarrow Energy chirp =±7

Final energy: 38 MeV

2. CC1 on-crest and CC2 off-crest

 θ 1=0 deg. and θ 2=-,+34 deg.

→ Energy chirp =±9

Final energy: 32 MeV

3. CC1 off-crest and CC2 off-crest

 $\theta 1 = -, +35 \text{ deg.}$ and $\theta 2 = -, +35 \text{ deg.}$

→ Energy chirp =±16

Final energy: 32 MeV

Optical functions from CC1 to beam dump

Beam sizes X along beam line

K values < 1.7 T/m (<< Max. K value: 7 T/m)

Off-momentum ($\Delta E/E=-1\%$, 0%, 1%)

- For CC2 chirp, effect of energy deviation is large.
- •For CC2 chirp, βx at slits : 0.44 m, 0.3 m, 0.24 m for $\Delta E/E=1\%$, 0%, -1%
- • $\sigma_x = [\epsilon \beta_x + (\delta_o + h\sigma_z)^2 \eta^2]^{1/2}$; in chicane, beam size strongly depends on energy chirp
- Max. rms beam size: ~5.3 mm (beam pipe radius= 25 mm)

Beam profiles at X121

THz waves are emitted by hitting Al foil target at X121 with micro-bunch beam.

CC1=35.4°, CC2=0° (h=-7)

CC1=35°, CC2=35° (h=-16)

CC1=0°, CC2=34° (h=-9)

Rms beam sizes at X121

$$\sigma x \leq 2.1 \, \text{mm}$$

$$\sigma y \ll 3.2 \text{ mm}$$

(Al target size : ~ 25 mm)

Rms bunch length at X121ot < 10 ps (3 mm)

- For CC1 chirp and both CC1 & CC2 off-crest, distributions are separated.
- For CC2 chirp, distribution has large overlap at $+\Delta p/p$ due to chromatic aberration from cavity.

Micro-bunch beam on screen monitor X118

- •To measure micro-bunch beam (σ_t ~0.3 ps) using streak camera is difficult.
 - → By turning on skew magnet after the slits, beam size Y after chicane can have information of z axis in the chicane. (Charles tried to do at A0)

- Using skew magnet in chicane, distributions separated in y-plane can be obtained.
- •K value of skew magnet should be ~0.4 [T/m] for clear separations.

Comparisons of bunching factor at X121 De-compression

- Frequencies of over 1 THz are obtained.
- To detect over ~1 THz wave using interferometer may be difficult.
- For both CC1 and CC2 off-crest, max. frequency is around 1.9 THz.

Generation of higher frequency waves at X121 over-compression

Higher frequency waves \rightarrow Short spacing between bunches \rightarrow Over-compression

- Max. frequency is around 3 THz (higher than those for de-compression).
- Longitudinal distributions may become worse, maybe because of space charge effect (short bunch length).

Comparisons of frequency spectra

Fundamental frequency vs. Energy chirp

$$f_0 = \frac{\eta c |h|}{D|1 + R_{56}h|}$$
 D: slit's spacing 950um, η : dispersion 0.32m h : energy chirp, c : speed of light, $R56$: -0.18

- Fundamental frequencies for de-compression mode agree with the analytical estimation.
- For over-compression, simulation frequencies are low compared with analytical calculation due to bad longitudinal distributions.

- Ratios of signal to background are over 10 for below 1 THz.
- At 1THz, amplitude for both cavities off-crest is about 3-10 times higher than that for the others cases.
- Amplitudes for de-compression are 5-10 times lower than that for single bunch with max. compression.
- For over-compression, amplitudes for two cases are almost same.
- Compared with single bunch with max. compression, over-compression is effective at higher frequencies.

Conclusions

Required beam parameters

- Normalized emittance \rightarrow <5x10⁻⁶ m rad
- Beam energy after RF gun → ~5 MeV
- •RF phases of CC1 and CC2 \rightarrow -40 deg.< θ < 40 deg.
- •Max. accelerating gradients of CC1 and CC2 \rightarrow 16 and 20 MeV/m
- Reveal micro-bunch at X118 with skew magnet in the chicane
- Varying energy chirp, fundamental frequency can be changed.

Expected frequencies

- Over 1 THz for de-compression
- Max. 3 THz for over-compression but bandwidths of frequencies are wide due to bad longitudinal distributions

Next study

"V" slits

Thank you for your attention