
MicroBooNE
Calibrations

Michael Mooney
Brookhaven National Laboratory /

Colorado State University

DUNE Calibration Mini-Workshop – July 26th, 2017



2

IntroductionIntroduction

♦ Calibrations are an important part of MicroBooNE's 
physics program

♦ Two goals:
• Ensure data/MC agreement

• Maximize physics reach of detector technology

♦ First point above can in principle be realized by simulating 
certain effects, but the second requires calibration program
• Desire is to produce unbiased physics measurements with 

maximal physics sensitivity

♦ Will focus on MicroBooNE today, drawing connections to 
DUNE FD and ProtoDUNEs where applicable
• But majority of DUNE-related content will be saved for tomorrow 

(8:00-8:30 am CT talk by M. Mooney)
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TPC Calibration ItemsTPC Calibration Items

♦ Two fundamental ways in which adverse detector effects 
impact reconstruction of data events:
• Reconstruction inefficiency

• Misreconstruction (e.g. biased calorimetry)

♦ Often both result from a given effect (e.g. utilization of 
incorrect wire field response function in deconvolution)

♦ Primary TPC calibration topics at MicroBooNE:
• Noise level

• Electronics response

• Wire field response

• Space charge effect

• Electron lifetime

♦ Overview of each in these slides (focus solely on TPC)
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TPC Calibration ItemsTPC Calibration Items

♦ Two fundamental ways in which adverse detector effects 
impact reconstruction of data events:
• Reconstruction inefficiency

• Misreconstruction (e.g. biased calorimetry)

♦ Often both result from a given effect (e.g. utilization of 
incorrect wire field response function in deconvolution)

♦ Primary TPC calibration topics at MicroBooNE:
• Noise level

• Electronics response

• Wire field response

• Space charge effect

• Electron lifetime

♦ Overview of each in these slides (focus solely on TPC)

Not emphasizing measurements
that can be done with other LArTPC

experiments or at test stands

e.g. recombination, diffusion, etc.
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Noise LevelsNoise Levels

♦ First things first:  had to address noise level at beginning of 
operations due to various noise issues (w/ software filter)
• Later addressed majority of noise issues in hardware
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Sources of NoiseSources of Noise

♦ Characterized noise sources impacting MicroBooNE – see 
MicroBooNE noise paper (recently accepted by JINST)

♦ Excess noise largely (~completely) removed in hardware (software)

2 μs
shaping

time
1 μs shaping time

https://arxiv.org/abs/1705.07341
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Noise-filtering PerformanceNoise-filtering Performance

♦ Events visually clean and noise level scales with wire length
• Post-filtering:  PSNR > 15 (35) for induction (collection) planes

♦ Given near-complete removal of noise in data, we do not 
simulate excess noise in MC
• Instead use data-driven intrinsic noise spectrum
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Electronics ResponseElectronics Response

♦ Several things impact the front-end (FE) electronics response, 
necessitating calibration
• Imperfect pole cancellation in shaping circuit (leads to dip after peak 

in shaping function)

• Response/gain of intermediate amplifier

• Different gain in-situ

• Different shaping time in-situ

♦ Use external pulser to characterize electronics response
• Gain and shaping times:  10% bias, uniform to 1%, time-independent

• Incorporate into deconvolution kernel – could simulate as well

♦ (Warm) ADCs not perfect at MicroBooNE, but pretty close
• Roughly 11.3 ENOB

• Leads to slightly different amount of unshaped white noise which is 
accounted for in MC via data-driven noise spectrum



Wire Field ResponseWire Field Response

♦ Wire field response represents induced/collected charge 
due to ionization electron drift past wires

♦ Calculate using Garfield-2D, use in simulation
• However, simulation may not represent data perfectly

• Use comparison to data-driven response (obtained by utilizing 
t0-tagged cosmic tracks) to tune simulated responses

♦ Vary residual differences as systematic in physics analyses

9

U Plane V Plane Y Plane



10

2D Deconvolution2D Deconvolution

♦ “Remove” wire response in deconvolution using tuned sim.
• Includes charge induced on wires neighboring the wire closest to 

ionization electrons (mainly U/V planes) → “2D deconvolution”

• See MicroBooNE public note on signal processing

First
Induction
(U) Plane

https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1017-PUB.pdf
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2D Deconvolution (cont.)2D Deconvolution (cont.)
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Interlude:  tInterlude:  t00-tagged Tracks-tagged Tracks

♦ Can tag cosmic muon t0 with TPC info (purify with PMTs)

• Side-piercing tracks:  assume through-going, use geometry

• Cathode-anode crossers:  projected x distance is full drift length

• ProtoDUNEs and DUNE FD also get cathode-crossers

♦ Public note from MicroBooNE coming out on this soon

C. Barnes,
D. Caratelli,
M. Mooney
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tt00-tagged Track Coverage-tagged Track Coverage

♦ Obtain O(1) t0-tagged track per event, ~98% purity

• Tracks crossing Y faces shown (sample also exists for Z faces)

♦ Gap in center of TPC – CRT will significantly add coverage

Anode-Piercing Tracks Cathode-Piercing Tracks
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Space Charge EffectsSpace Charge Effects
♦ MicroBooNE is on surface → space charge effects (SCE)

♦ Space charge (slow moving argon ions) will pull drifting ionization 
electrons inward toward the center of the drift volume
• Modifies E field in TPC, thus recombination level (dQ/dx)

• Modifies spatial information, thus track/shower direction, dQ/dx

• Magnitude of spatial distortions scales with D3, E-1.7

Ion Charge Density [nC/m3]

K. McDonald

Approximation!
No Drift!

μBooNE
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SCE Simulation – E FieldSCE Simulation – E Field

273 V/cm

Central Z Slice
(Max Effect)

Cathode On Right
(One Drift Volume)

Drift Coordinate:  X
Beam Direction:  +Z

(Into Page)
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SCE Simulation – SpatialSCE Simulation – Spatial

273 V/cm

Central Z Slice
(Max Effect)

Cathode On Right
(One Drift Volume)

Drift Coordinate:  X
Beam Direction:  +Z

(Into Page)
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μμBooNE SCE Data/MC Comp.BooNE SCE Data/MC Comp.

♦ Compare data to SCE simulation at top/bottom of TPC
• See MicroBooNE space charge effect public note

• Good agreement, small shape deviations (liquid argon flow?)

♦ Calibrate out of data with laser/cosmic tracks, vary residual 
differences as systematic in physics analyses

https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1018-PUB.pdf
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SCE Calib. via Laser SystemSCE Calib. via Laser System

Simulated Laser Coverage:  X-Z Plane

Simulated Laser Coverage:  Y-Z Plane

♦ Can calibrate out SCE with UV laser system quite well
• Know true laser track position

♦ Complications due to gaps in coverage, potentially time-
dependence → complementarity from cosmic muons
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SCE Calibration w/ TracksSCE Calibration w/ Tracks
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SCE Calibration w/ TracksSCE Calibration w/ Tracks

Currently evaluating techniques for
SCE calibration using cosmics at

MicroBooNE
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Electron LifetimeElectron Lifetime

♦ Natural to calibrate out SCE first before electron lifetime:  SCE 
results in spatial and charge variations, while electron lifetime 
strictly influences amount of charge collected

♦ Measure in data using cathode-anode crossing tracks

♦ Electron lifetime known to be quite high at MicroBooNE since first 
operations (purity monitors, signal-to-noise ratio)
• Likely small impact for physics – might not be the case for DUNE



♦ Discussed calibrations utilizing TPC noise data, external 
pulser, t0-tagged cosmic muons, and UV laser system

• Did not cover CRT (for t0-tagging of cosmics) since not yet been 
integrated into our data stream – should be ready by end of year

• CRT will especially aid calibration of space charge effects

♦ Calibration program at MicroBooNE still in progress
• Limited people-power → must prioritize

♦ If I had to guess, biggest systematics at MicroBooNE due to 
electronics/field response shape and space charge effects
• High electron lifetime means purity not much of an issue, and 

noise largely removed with hardware/software noise filtering

♦ For discussion:  MicroBooNE public notes
22

SummarySummary

https://www-microboone.fnal.gov/publications/publicnotes/
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BACKUP
SLIDES
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Impact on Track Reco.Impact on Track Reco.

♦ Two separate effects on reconstructed tracks:
• Reconstructed track shortens laterally (looks rotated)

• Reconstructed track bows toward cathode (greater effect near center 
of detector)

♦ Can obtain straight track (or multiple-scattering track) by 
applying corrections derived from data-driven calibration
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SpaCE:  Space Charge EstimatorSpaCE:  Space Charge Estimator

♦ Code written in C++ with ROOT libraries

♦ Also makes use of external libraries (ALGLIB)

♦ Primary features:
• Obtain E fields analytically (on 3D grid) via Fourier series

• Use interpolation scheme (RBF – radial basis functions) to 
obtain E fields in between solution points on grid

• Generate tracks in volume – line of uniformly-spaced points

• Employ ray-tracing to “read out” reconstructed {x,y,z} point for 
each track point – RKF45 method

♦ Can simulate arbitrary ion charge density profile if desired
• Linear space charge density approximation for now

♦ Output:  E field and spatial distortion maps (vs. {x,y,z})
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SCE SimulationSCE Simulation

♦ Can use SpaCE to produce displacement maps
• Forward transportation:  e.g. {x, y, z}

true
 → {x, y, z}

reco

– Use to simulate effect in MC

– Uncertainties describe accuracy of simulation

• Backward transportation:  e.g. {x, y, z}
reco

 → {x, y, z}
true

– Derive from calibration and use in data or MC to correct 
reconstruction bias

– Uncertainties describe remainder systematic after bias-correction

♦ Two principal methods to encode displacement maps:
• Parametric representation (for now, 5th/7th order polynomials) – 

fewer parameters (thanks to Xin Qian for parametrization)

• Matrix representation – more generic/flexible

♦ Module in LArSoft ready to utilize maps (E field, spatial)
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ProtoDUNE-SP E Field SCE Dist.ProtoDUNE-SP E Field SCE Dist.

Central Z Slice (Max Effect)
Cathode In Middle (Two Drift Volumes)

Drift Coordinate:  X
Beam Direction:  +Z  (Into Page)

500 V/cm
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ProtoDUNE-SP Spatial SCE Dist.ProtoDUNE-SP Spatial SCE Dist.

Central Z Slice (Max Effect)
Cathode In Middle (Two Drift Volumes)

Drift Coordinate:  X
Beam Direction:  +Z  (Into Page)

500 V/cm
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