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(\ Introduction |

¢ Calibrations are an important part of MicroBooNE's
physics program

¢ Two goals:
* Ensure data/MC agreement
« Maximize physics reach of detector technology

¢ First point above can in principle be realized by simulating
certain effects, but the second requires calibration program
* Desire is to produce unbiased physics measurements with
maximal physics sensitivity

¢ Will focus on MicroBooNE today, drawing connections to
DUNE FD and ProtoDUNEs where applicable

* But majority of DUNE-related content will be saved for tomorrow
(8:00-8:30 am CT talk by M. Mooney)



(\ TPC Calibration Items s

¢ Two fundamental ways in which adverse detector effects
impact reconstruction of data events:

* Reconstruction inefficiency

* Misreconstruction (e.g. biased calorimetry)

¢ Often both result from a given effect (e.g. utilization of
incorrect wire field response function in deconvolution)

¢ Primary TPC calibration topics at MicroBooNE:
* Noise level
* Electronics response
*  Wire field response
* Space charge effect

* Electron lifetime

¢ Overview of each in these slides (focus solely on TPC)



TPC Calibration Items s

¢ Two fundamental ways in which adverse detector effects
impact reconstruction of data events:

* Reconstruction inefficiency

Not emphasizing measurements
that can be done with other LArTPC
experiments or at test stands

e.g. recombination, diffusion, etc.

*  Wire field responsée
* Space charge effect

* Electron lifetime

¢ Overview of each in these slides (focus solely on TPC)



\ Noise Levels -
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¢ First things first: had to address noise level at beginning of
operations due to various noise issues (w/ software filter)

* Later addressed majority of noise issues in hardware 5



Sources of Noise

Magnitude (Arbitrary Units)

Example of Excess Noise

III|III |IIII|IIII|IIII IIII|I II|IIII|IIII|III
10 i = 1200
B MicroBooNE -
1 us shaping time
1000
i 2]
Cathode HV Harmonic Noise . =
900 kHz Burst Noise C 800
10°}|- l N D
© 600
=
0
| -
< 400
10°
200
LV Regulator Noise
I]l]lll |lJlJlJIl]l]lJI JlJlJl ILIlJlJllJlJlJI]

0 l 01 02 03 04 05 06 07 08 09 1 0

Frequency (MHz)

¢ Characterized noise sources impacting MicroBooNE — see

NATIONAL LABORATORY

MicroBooNE

11|||_I|||| T T 1 | 1 1 | T T | I

2 us
shaping
time

«wnmen U Plane, Before Hardware Fix
------------ V Plane, Before Hardware Fix

"""""" Y Plane, Before Hardware Fix

U Plane, After Hardware Fix
V Plane, After Hardware Fix
Y Plane, After Hardware Fix

"""'I‘"""'lllII|III|III|III|I

Frequency [MHz]

0.1 015

MicroBooNE noise paper (recently accepted by JINST)

Q -
ey . | T
]

¢ Excess noise largely (~completely) removed in hardware (software)
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https://arxiv.org/abs/1705.07341
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(\ Noise-filtering Performance

Wire Noise Level in MicroBooNE
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Angle-Corrected PSNR (Peak Signal-to-Noise Ratio)

¢ Events visually clean and noise level scales with wire length
* Post-filtering: PSNR > 15 (35) for induction (collection) planes

¢ Given near-complete removal of noise in data, we do not
simulate excess noise in MC

* Instead use data-driven intrinsic noise spectrum 7



(\ Electronics Response s

¢ Several things impact the front-end (FE) electronics response,
necessitating calibration

* Imperfect pole cancellation in shaping circuit (leads to dip after peak
in shaping function)

* Response/gain of intermediate amplifier
 Different gain in-situ
 Different shaping time in-situ
¢ Use external pulser to characterize electronics response

* Gain and shaping times: 10% bias, uniform to 1%, time-independent

* Incorporate into deconvolution kernel — could simulate as well
¢ (Warm) ADCs not perfect at MicroBooNE, but pretty close
* Roughly 11.3 ENOB

* Leads to slightly different amount of unshaped white noise which is
accounted for in MC via data-driven noise spectrum
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(\ Wire Field Response

¢ Wire field response represents induced/collected charge
due to ionization electron drift past wires

¢ Calculate using Gartfield-2D, use in simulation
* However, simulation may not represent data perfectly

* Use comparison to data-driven response (obtained by utilizing
t -tagged cosmic tracks) to tune simulated responses

¢ Vary residual differences as systematic in physics analyses

Data/MC Response Comparison: U Plane, Normal Region Data/MC Response Comparison: V Plane, Normal Region Data/MC Response Comparison: Y Plane, Normal Region
0.06 . 0.08
0.04:— U Pl — UPlane, Data | (]l]ﬁ:— V Pl — V Plane, Data ] “'14; Y Pl — Y Plane, Data
- ane — UPlane, Sim. E ane — V Plane, Sim. E 0.2 ane — Y Plane, $im.
- 0.04— —] C ]
01— ]
" w 002 1 r
= E = E E 008 -
- 1 = 0 =] r
-E' ] s _E' ﬂ.ﬂﬁj |
- =002 - C
< < E 3 T o =
- —0.04— ] C
] E ] 0.02— -
= —0.06— - C
0_
- ~0.08 - E
PRI N R SR AT SRR RN R ol b b b b e 1 ] S S S R
-30 20 -10 0 10 20 30 -30 20 -10 0 10 20 30 =30 =20 -10 0 10 20 30

Time Offset [us] Time Offset [us] Time Offset [11s] 9



2D Deconvolution

First
Induction
(U) Plane
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..>

2D Garfield Responses

302010 0 10
Time (us)

Time [us]

7501

'S
o
(=]

&
=]

1501

IRawl

AfFer Npise Fliiterirl'ng

BROOKHRUEN

NATIONAL LABORATORY

After 2-D IDecnlm.rniultiun A.U.

pBoo@

Run 3493
Event 41075

7N
\\

40000

|'I"‘II -

20000

—A0 000

35 40 60 80
Wire [3 mm spacing]

“Remove” wire response in deconvolution using tuned sim.

* Includes charge induced on wires neighboring the wire closest to
ionization electrons (mainly U/V planes) — “2D deconvolution”

* See MicroBooNE public note on signal processing
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https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1017-PUB.pdf

21D Deconvolution (cont.)
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\§ Interlude: t -tagged Tracks g

C. Barnes,
D. Caratelli,
M. Mooney

+y

+z (Beam Direction)

X

+X

¢ Can tag cosmic muon t, with TPC info (purify with PMTs)

* Side-piercing tracks: assume through-going, use geometry

* ProtoDUNEs and DUNE FD also get cathode-crossers

¢ Public note from MicroBooNE coming out on this soon 12



t,-tagged Track Coverage

Anode-Piercing Tracks

Anode-Piercing Tracks in Off-Beam Cosmic Events: Track-Hit Density Per Event
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Cathode-Piercing Tracks

Cathode-Piercing Tracks in Off-Beam Cosmic Events: Track-Hit Density Per Event
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MicroBooNE Preliminary
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¢ Obtain O(1) t -tagged track per event, ~98% purity

¢ Gap in center of TPC — CRT will significantly add coverage

* Tracks crossing Y faces shown (sample also exists for Z faces)

10!



Space Charge Effects
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¢ MicroBooNE is on surface — space charge effects (SCE)

¢ Space charge (slow moving argon ions) will pull drifting ionization

p [nC/m?)

electrons inward toward the center of the drift volume

90

* Modifies E field in TPC, thus recombination level (dQ/dx)

* Modifies spatial information, thus track/shower direction, dQ/dx

* Magnitude of spatial distortions scales with D3, E
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(\ uBooNE SCE Data/MC Comp. s

:_ MicroBooNE Preliminary
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¢ Compare data to SCE simulation at top/bottom of TPC

* See MicroBooNE space charge effect public note

* Good agreement, small shape deviations (liquid argon flow?)

¢ Calibrate out of data with laser/cosmic tracks, vary residual

differences as systematic in physics analyses -


https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1018-PUB.pdf

(\ SCE Calib. via Laser System s
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¢ Can calibrate out SCE with UV laser system quite well
* Know true laser track position

¢ Complications due to gaps in coverage, potentially time-

dependence — complementarity from cosmic muons
Y 18



(\ SCE Calibration w/ Tracks

X Reconstructed X
Track (with SCE) Reconstructed
——— l Track (with SCE)
“True” Track -
TPC (no SCE) TPL
Face Face “True” Track
(no SCE)
Anode Anode

¢ Two samples of t -tagged tracks can provide SCE corrections:

NATIONAL LABORATORY

TPC
Face

—>Y/Z

* Single tracks — enable corrections at TPC faces by utilizing endpoints of
tracks (correction vector approximately orthonormal to TPC face)

« Pairs of tracks — enables corrections in TPC bulk by utilizing

unambiguous point-to-point correction looking at track crossing points

¢ Require high-momentum tracks (plenty from cosmics, beam halo) 19



TPC
Face

¢ Two samples O

Reconstructed
Track (with SCE)

. .

“True” Track
(no SCE)

Currently evaluating techniques for
SCE calibration using cosmics at
MicroBooNE

(\ SCE Calibration w/ Tracks

Reconstructed
Track (with SCE)

gfrections:
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TPC
Face

—>Y/Z

* Single tracks — enable corrections at TPC faces by utilizing endpoints of

L

tracks (correction vector approximately orthonormal to TPC face)

Pairs of tracks — enables corrections in TPC bulk by utilizing
unambiguous point-to-point correction looking at track crossing points

¢ Require high-momentum tracks (plenty from cosmics, beam halo) 20




(\ Electron Lifetime oo

MicroBooNE Volume Exchanges
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¢ Natural to calibrate out SCE first before electron lifetime: SCE
results in spatial and charge variations, while electron lifetime
strictly influences amount of charge collected

¢ Measure in data using cathode-anode crossing tracks

¢ Electron lifetime known to be quite high at MicroBooNE since first
operations (purity monitors, signal-to-noise ratio)

* Likely small impact for physics — might not be the case for DUNE o1
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¢ Discussed calibrations utilizing TPC noise data, external
pulser, t_-tagged cosmic muons, and UV laser system

* Did not cover CRT (for to-tagging of cosmics) since not yet been
integrated into our data stream — should be ready by end of year

« CRT will especially aid calibration of space charge effects

¢ Calibration program at MicroBooNE still in progress
* Limited people-power — must prioritize
¢ If I had to guess, biggest systematics at MicroBooNE due to
electronics/field response shape and space charge effects

* High electron lifetime means purity not much of an issue, and
noise largely removed with hardware/software noise filtering

¢ For discussion: MicroBooNE public notes
22


https://www-microboone.fnal.gov/publications/publicnotes/
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(\ Impact on Track Reco.

¢ Two separate effects on reconstructed tracks:
@ * Reconstructed track shortens laterally (looks rotated)

* Reconstructed track bows toward cathode (greater effect near center
of detector)

¢ Can obtain straight track (or multiple-scattering track) by
applying corrections derived from data-driven calibration

Cathode
Anode

24



(\ SpaCE: Space Charge Estimator juss

¢ Code written in C++ with ROOT libraries
¢ Also makes use of external libraries (ALGLIB)

¢ Primary features:
* Obtain E fields analytically (on 3D grid) via Fourier series

* Use interpolation scheme (RBF — radial basis functions) to
obtain E fields in between solution points on grid

* Generate tracks in volume — line of uniformly-spaced points
* Employ ray-tracing to “read out” reconstructed {x,y,z} point for
each track point — RKF45 method
¢ Can simulate arbitrary ion charge density profile if desired

* Linear space charge density approximation for now

¢ Output: E field and spatial distortion maps (vs. {x,y,z})
25



\ SCE Simulation Lo

¢ Can use SpaCE to produce displacement maps

« Forward transportation: e.g. {x,y,z} —{Xx,vy,z}

true reco

— Use to simulate effect in MC

— Uncertainties describe accuracy of simulation
et

— Derive from calibration and use in data or MC to correct
reconstruction bias

« Backward transportation: e.g. {x,y, z}

reco

— Uncertainties describe remainder systematic after bias-correction

¢ Two principal methods to encode displacement maps:

« Parametric representation (for now, 5™/7" order polynomials) —
fewer parameters (thanks to Xin Qian for parametrization)

* Matrix representation — more generic/flexible

¢ Module in LArSoft ready to utilize maps (E field, spatial) o6



w (\ ProtoDUNE-SP E Field SCE Dist. i
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(\ ProtoDUNE-SP Spatial SCE Dist.
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Central Z Slice (Max Effect)
Cathode In Middle (Two Drift Volumes)

Drift Coordinate: X

Beam Direction: +Z (Into Page)
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