

CERN Div./Group or Supplier/Contractor Document No.

TE-CR

Technical Specification

Interface Control Document for the Interface between the NP02 cryostat penetration purge outlet and the proximity cryogenics warm piping

Preparea by:	Verified by:	Approvea by:
Joaquim Creus, TE-CRG	Sebastien Murphy, EP-UFT	Filippo Resnati, EP-NU
	Adamo Gendotti, EP-UCG	
	David Montanari, EP-NU	
	Michel Chalifour, TE-CRG	
Date : 11 th July 2017	Date: 12 th July 2017	Date: 13 th July 2017

Document History

Rev. No.	Date	Pages	Change Description
1	23 May 2017	13	Development of interface control document
2	11 July 2017	11	Extension of information

Table of Contents

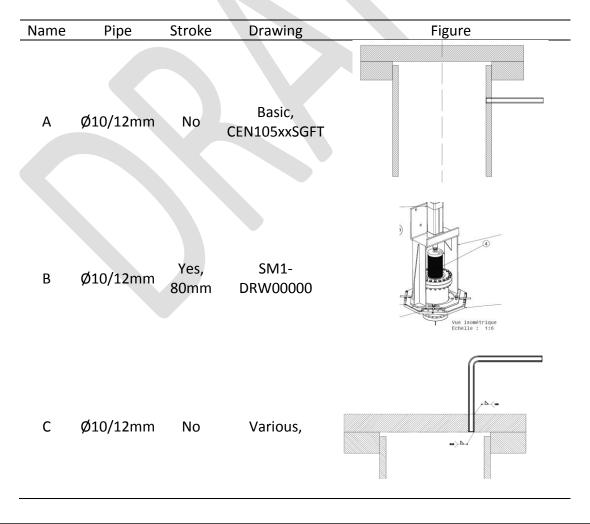
NOM	NOMENCLATURE4							
1.	INTRODUCTION	5						
2.	TECHNICAL SPECIFICATION	5						
2.1	PURGE PORTS	5						
2.2	THE PURGE VALVES							
2.3	NP02 WARM PIPING	7						
3.	INTERFACE	8						
3.1	INTERFACE FOR NP-02 EXPERIMENT							
3.2	INTERFACE FOR NP-02 INTERNAL CRYOGENICS	9						
3.3	INTERFACE DRAWINGS	10						
4.	SAFETY REGULATION	10						
5.	QUALITY ASSURANCE	11						
6.	INSTALLATION ACTIVITIES AND SCHEDULE	11						
7.	PARTS AND RESPONSIBILITY LIST	11						

NOMENCLATURE

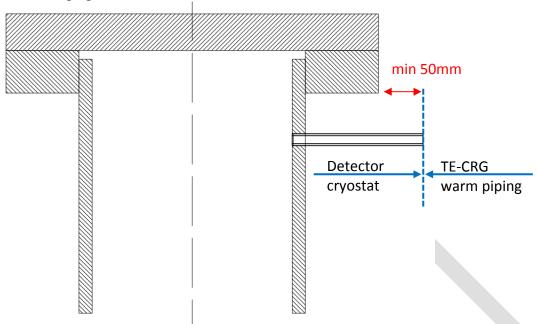
PBS Product Breakdown Structure

Work Breakdown Structure WBS

NP Neutrino Platform


1. INTRODUCTION

The membrane cryostats for NP-02 are based in a thick passive insulation membrane. In order to fulfil the detector and proximity cryogenics functions, openings are created on top of the cryostat. Each opening creates a chimney for the warmer gas in the cryostat, which at the same time, warms the detector cables creating outgassing. The penetrations are the location where the warmer gas of the cryostat goes, but at the same time is an impurities source. For this reason, each penetration is required to have a purge port on the highest part. The proximity cryogenics subsystems can then manage and analyse the purge gas to later dump it or purify it.


2. TECHNICAL SPECIFICATION

2.1 PURGE PORTS

Purge ports are openings placed at the top of each penetration to evacuate warm gas that has been exposed to outgassing. The typical flow value for each penetration is 0.1 g/s, accounting for a linear speed of about 0.3cm/s. Since the penetrations and the proximity cryogenics are developed by different parties, the technical details are put in common. Port type A is the basic variation for flanges that have no room on the top. Port type B is developed for the NPO2 field cage positioning system that has an 80mm stroke and needs a flexible pipe. Port type C is developed to purge the penetrations with blind flanges that have available on top room.

To ensure quality in penetration type A, the boundary between TE-CRG and the cryostat is fixed in the following figure.

The \emptyset 10/12mm pipe for penetration type A location shall be proposed according to the position and size of the flange, respecting the clearance for flange tightening bolts and extending the pipe 50mm longer than the flange.

2.2 THE PURGE VALVES

The purge valves are required to offer cryostat top penetrations isolation in all modes of operation. The device shall have a pneumatic normally closed on/off function with a single acting cylinder, offer bellows insulation and have weld-on butt weld fittings with pipe standard ISO 1127 and dimensions Ø10/12mm. The Kv is expected to be 0.95 m3/h. In principle the valve Kv shall be much smaller but in order to ease the welding process a larger valve is preferred. In order to equalize the flow rate of each piping branch, it is proposed to use flow restrictors at each branch runoff to create a 100mbar pressure drop for each branch in parallel. Each purge valve will be controlled with a pneumatic battery under electrical insulation. To simplify grounding and lower costs the valves will not feature position detection.

2.3 NP02 WARM PIPING

Starting from the cryostat top access specifications, transit areas are defined in order to set the warm piping routing.

NP-02 CRYOSTAT TOP ACCESS LAYOUT

The NP02 top cap warm piping is based on a manifold with 6 legs, each manifold has an Ø 10/12mm pipe going to each penetration purge valve.

3. INTERFACE

3.1 INTERFACE FOR NP-02 EXPERIMENT

The interface points between the detector penetrations purge points and the warm piping are covered in the table below:

Cryostat/Detector			Warm pi	ping TI	E-CRG	
POS	DESCRIPTION	INTERFACE	RESP.	VALVE	Р	FLOW
		TYPE		TAG	bar	g/s
1.1	Field cage suspension	С	P.DUNE DP	2PV4453	10	0.1
1.2	Field cage suspension	С	P.DUNE DP	2PV4454	10	0.1
1.3	Field cage suspension	С	P.DUNE DP	2PV4455	10	0.1
1.4	Field cage suspension	С	P.DUNE DP	2PV4456	10	0.1
1.5	Field cage suspension	С	P.DUNE DP	2PV4457	10	0.1
1.6	Field cage suspension	С	P.DUNE DP	2PV4458	10	0.1
1.7	Field cage suspension	С	P.DUNE DP	2PV4459	10	0.1
1.8	Field cage suspension	С	P.DUNE DP	2PV4460	10	0.1
1.9	Field cage suspension	С	P.DUNE DP	2PV4461	10	0.1
1.10	Field cage suspension	С	P.DUNE DP	2PV4462	10	0.1
1.11	Field cage suspension	С	P.DUNE DP	2PV4463	10	0.1
1.12	Field cage suspension	С	P.DUNE DP	2PV4464	10	0.1
1.13	Field cage suspension	С	P.DUNE DP	2PV4465	10	0.1
1.14	Field cage suspension	С	P.DUNE DP	2PV4466	10	0.1
1.15	Field cage suspension	С	P.DUNE DP	2PV4467	10	0.1
1.16	Field cage suspension	С	P.DUNE DP	2PV4468	10	0.1
2.1	Slow control chimneys	С	P.DUNE DP	2PV4469	10	0.1
2.2	Slow control chimneys	С	P.DUNE DP	2PV4470	10	0.1
2.3	Slow control chimneys	С	P.DUNE DP	2PV4471	10	0.1
2.4	Slow control chimneys	С	P.DUNE DP	2PV4472	10	0.1
3.1	Signal chimneys FTS	Α	P.DUNE DP	2PV4473	10	0.1
3.2	Signal chimneys FTS	А	P.DUNE DP	2PV4474	10	0.1
3.3	Signal chimneys FTS	Α	P.DUNE DP	2PV4475	10	0.1
3.4	Signal chimneys FTS	А	P.DUNE DP	2PV4476	10	0.1
3.5	Signal chimneys FTS	А	P.DUNE DP	2PV4477	10	0.1
3.6	Signal chimneys FTS	Α	P.DUNE DP	2PV4478	10	0.1
3.7	Signal chimneys FTS	Α	P.DUNE DP	2PV4479	10	0.1
3.8	Signal chimneys FTS	Α	P.DUNE DP	2PV4480	10	0.1
3.9	Signal chimneys FTS	Α	P.DUNE DP	2PV4481	10	0.1
3.10	Signal chimneys FTS	Α	P.DUNE DP	2PV4482	10	0.1
3.11	Signal chimneys FTS	Α	P.DUNE DP	2PV4483	10	0.1
3.12	Signal chimneys FTS	Α	P.DUNE DP	2PV4484	10	0.1

	Cryostat/Det	Warm pip	ing TE-	CRG		
POS	DESCRIPTION	INTERFACE	RESP	VALVE TAG	Р	FLOW
		TYPE			bar	g/s
4.1	Anode suspensions FTS	В	P.DUNE DP	2PV4485	10	0.1
4.2	Anode suspensions FTS	В	P.DUNE DP	2PV4486	10	0.1
4.3	Anode suspensions FTS	В	P.DUNE DP	2PV4487	10	0.1
4.4	Anode suspensions FTS	В	P.DUNE DP	2PV4488	10	0.1
4.5	Anode suspensions FTS	В	P.DUNE DP	2PV4489	10	0.1
4.6	Anode suspensions FTS	В	P.DUNE DP	2PV4490	10	0.1
4.7	Anode suspensions FTS	В	P.DUNE DP	2PV4491	10	0.1
4.8	Anode suspensions FTS	В	P.DUNE DP	2PV4492	10	0.1
4.9	Anode suspensions FTS	В	P.DUNE DP	2PV4493	10	0.1
4.10	Anode suspensions FTS	В	P.DUNE DP	2PV4494	10	0.1
4.11	Anode suspensions FTS	В	P.DUNE DP	2PV4495	10	0.1
4.12	Anode suspensions FTS	В	P.DUNE DP	2PV4496	10	0.1
5	High Voltage Feedthrough	nd	P.DUNE DP	nd	nd	nd
6	Manhole	А	P.DUNE DP	2PV4497	10	0.1
9.1	Tank instrumentation	С	P.DUNE DP	2PV4498	10	0.1
9.2	Tank instrumentation	С	P.DUNE DP	2PV4499	10	0.1

3.2 INTERFACE FOR NP-02 INTERNAL CRYOGENICS

The interface points between the internal cryogenics purge points and the warm piping are covered in the table below:

Cryostat/Internal Cryogenics					iping TI	E-CRG
POS	DESCRIPTION	INTERFACE	RESP	VALVE	Р	m
		TYPE		TAG	bar	g/s
10.1	Gar Combo	Α	CA 6680914	2PV4497	10	0.1
11.1	LAr Cooldown	Α	CA 6680914	2PV4498	10	0.1
11.2	LAr Distribution	Α	CA 6680914	2PV4499	10	0.1
11.3	Spare	Α	D.MONTANARI	2PV4501	10	0.1
11.4	LAr Cooldown to condenser	Α	CA 6680914	2PV4502	10	0.1
11.5	Gar Boiloff	Α	D.MONTANARI	2PV4552	10	0.1
12.1	Spare	Α	D.MONTANARI	2PV4504	10	0.1
12.2	Spare	Α	D.MONTANARI	2PV4506	10	0.1
12.3	Backup PSV/VSV	Α	D.MONTANARI	2PV4507	10	0.1
12.4	Spare	Α	D.MONTANARI	2PV4508	10	0.1
13.1	Instrumentation	Α	D.MONTANARI	2PV4509	10	0.1
14.1	Spare & Instrumentation	Α	D.MONTANARI	2PV4511	10	0.1
14.2	Spare & Instrumentation	Α	D.MONTANARI	2PV4512	10	0.1
14.3	Main PSV/VSV	Α	CA 6680914	2PV4513	10	0.1
15	LAr Pump	nd	nd	nd	nd	nd

3.3 INTERFACE DRAWINGS

Drawings of the location of penetrations in the cryostat by EP-DI, ProtoDUNE Single Phase and ProtoDUNE Dual Phase:

	CRYOSTAT PENETRATIONS						
PBS	Document	File type	Title				
NP-02-00-00	CEN105CR0247	.pdf	NP02 cryostat penetrations layout				
NP-02-00-00	SM1-DRW00000/	.pdf	Suspension feedthrough assembly				
CEN105xxCRPSPFT							
NP-02-00-00	CEN105xxFSCPFT	.pdf	Field cage suspension				
NP-02-00-00	CEN105xxCRP-INS	.pdf	CRP Instrumentation				
NP-02-00-00	CEN105xxSGFT	.pdf	Signal FT				
NP-02-00-00	CEN105xxHVFT	.pdf	High voltage FT				
NP-02-00-00	CEN105xxTANK-INS	.pdf	Tank instrumentation				

P&ID drawings of the warm valves tag number according to penetration number by TE-CRG:

P&ID DRAWING						
PBS	Title					
2PV4453-2PV4496	CEN105CG0148	.pdf	NP02 P&ID SVs and penetrations			

Tender documents of the internal cryogenics for NP-02:

INTERNAL CRYOGENICS					
PBS	Document	File type	Title		
NP-00-00-00	NP 00 00 00 - CETS – 00703/ EDMS 1725394	.docx/.pdf	PE supply of internal cryogenics		
NP-02-00-00	CEN105CG0134	.pdf	NP02 Internal cryogenics layout		
NP-02-00-00	EDMS 1730764	.xlsx /.pdf	NP02 Internal cryogenics ICD		
NP-02-00-00	EDMS	.pdf	CA 6680914 docs		

Drawings of the warm piping drawings made by TE-CRG according to cryostat penetration location:

WARM PIPING DRAWINGS						
PBS	Document	File type	Title			

4. SAFETY REGULATION

Some of the regulation applicable include:

- Pipe geometry according to ISO 1127
- PED European Directive 2014/68/EU

Leak testing according to EN 1779

5. QUALITY ASSURANCE

Design:

- Inspection of routing according to access layout
- Evaluation of pipe volume and pressure according to pressure equipment standards
- Revision of drawings and material lists

Manufacturing:

- Leak testing of pipe welds according to EN 1779
- Pressure testing of pipes with closed valves with 10 bar pressure
- As built inspection according to construction layout and process P&ID

6. INSTALLATION ACTIVITIES AND SCHEDULE

The transformation of cryostat penetration flanges to purge ports type A shall be performed before the flanges are welded on the cryostat. The warm piping installation activities performed by TE-CRG for NP02 are going to take place when all the components are in place, the earliest January 2018.

7. PARTS AND RESPONSIBILITY LIST

The parts and responsibility list include:

PBS	Description of product	Responsible
NP-02-00-00	Cryostat penetrations purge ports type A	Cryostat
NP-02-00-00	Internal cryogenics purge ports type A	Cryostat
NP-02-00-00	Physics Instrumentation and spare flanges	ProtoDune DP
NP-02-00-00	Cryogenics spare flanges	D. Montanari
NP-02-00-00	Warm piping and valves installation	TE-CRG