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Abstract. The DUNE Far Detector is a Liquid-Argon TPC that resides at the 4850 ft level at the Sanford

Underground Research Facility. This detector allows for both the visualization and the measurement of
charged particle energy deposition. Cosmic-rays that penetrate down to the detector have a wide energy

range. Of focus in this study is 0.2 GeV to 1000 GeV. The detector response to the µ’s is simulated using

GEANT4. Mean energy loss and most probable energy loss are presented as a function of momentum.
Preliminary results are given that will help develop and algorithm that determine energies from energy

deposition of high-energy µ’s.

Contents

1. Introduction 2
1.1. Bethe-Bloch Equation 2
1.2. Landau Distributions: Most Probable Value 2
1.3. Knock-on electrons (δ rays) 3
2. Simulation and Analysis 4
2.1. The Detector 4
2.2. Simulation 4
2.3. Analysis 5
2.4. Results 6
3. Conclusion 6

1



2KEVIN INGLES, UNIVERSITY OF SOUTH ALABAMA THOMAS JUNK, FERMILAB ALBERTO MARCHIONNI, FERMILAB FERMILAB: SIST PROGRAM

1. Introduction

1.1. Bethe-Bloch Equation. As fast, v = βc, charged particles travel through matter they interact with
it. These interactions include ionization and excitation at moderate energies. The Bethe-Bloch equation
gives the expected energy loss for charged particles heavier than electrons travelling through a material. The
formula can be written as〈
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where K = 0.307075 MeV cm2 mol−1 is a constant, z is the charge number (Q = ze), Z is the atomic
number of the material, A is the atomic mass of the material in g mol−1, hence 〈−dE/dx〉 has units MeV
cm2 g−1, and I is the mean excitation energy obtained by summing the oscillation strengths of the atom
(add ref). The Wmax factor is the maximum kinetic energy transferred to an electron in a single collision
and expressed as (add ref)
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M denotes the mass of the incident particle. For high energies Eq. 2 grows as γ and results in the incident
particle having potentially hard collisions. The δ factor in Eq. 1 is the density correction and describes how
the expanding electric field of a fast charged particle is truncated due to polarization of the material, thus
limiting how much energy can be lost. At very high energies
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Where ~ωp is the plasma energy of the material. The density correction as parameterized by Sternheimer
(add ref) is

δ(βγ) =


2(ln 10)y − C if y ≥ y1
2(ln 10)y − C + a(y1 − y)k ify0 ≤ y < y1.

0 ify < y0(nonconductors)

(4)

Here y = log10βγ, C is obtained equation Eq. 3 with Eq. 4, and y0, y1, a and k are fitted parameters. To
write 〈−dE/dx〉 as a function of momentum let βγ = p/M , β2 = [(M/p)2 + 1]−1 and γ2 = (p/M)2 + 1.

For very high energy particles the expected energy loss is given by〈
−dE
dx

〉
= a(E) + b(E)E, (5)

here a(E) is given by Eq. 1 and b(E) is a very slowly varying function that accounts for the radiative losses.
The function b(E) can be split up into three pieces

btot = bbrems + bpair + bnucl (6)

where the components account for bremsstrahlung, direct paired production and nuclear interaction. Direct
paired production differs from conventional paired production insofar as instead of having photons convert,
the positron-electron pair is created directly from the charged particle. An example of the of Eq.1, 5, 6 for
µ’s in liquid argon can be seen in Fig. 1.

1.2. Landau Distributions: Most Probable Value. From Eq. 1 one obtains the expected value of
energy loss, which is weighted by rare and hard collision. The Landau-Vavilov distribution describes the
energy loss of a single particle with a specific momentum. The Landau-Vavilov distribution is given as an
integral (add ref)
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The integral must be evaluated numerically. The factor ξ
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is momentum dependent, x is units g cm−2 and λ is given by
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Figure 1. Expected energy lossfor
µ’s in liquid Argon

Figure 2. Bethe-Bloch and
Landau-Vavilov-Bichsel compared

Here ξ and Wmax are given by their previous definitions and ΓE is Euler’s constant. The ∆p is most probable
energy loss value (MPV) and 〈∆〉 is the expected energy loss respectively.

The MPV sits at the top of the Landau-Vavilov distribution. How this value changes with momentum is
given by the Landau-Vavilov-Bichsel (LVB) equation (add ref)
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This expression has plateau at high energies known as the ”Fermi Plateau” and given by
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It is worth noting that the relativistic rise observed is due to Wmax. See Fig. 2.
In Fig. 3 LArIAT used the LVB equation to tune their detectors calibration constant, the data is seen

to follow the slow growing track of the dotted red curve better than that of the solid red line (LVB and
Bethe-Bloch, respectively). The calibration, when applied to the protons, then shows that the proton energy
loss behavior follows that of LVB equation as well.

Figure 3. LArIAT tuning detector to my analytical curves.

1.3. Knock-on electrons (δ rays). Knock-on electrons, or delta rays, are electrons that have been freed
from their atoms and can travel freely. For spin- 12 particles the distribution of δ rays with Te � I is given
by (add ref)
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where T and m are the kinetic energy and rest mass of the incident particle. The expression in the brackets
was obtained from Rossi (add ref). Integrating this expression over I � Tcut ≤ Te ≤Wmax one obtains
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Here ζ = β2/Wmax and ξ = 1/(T + m)2. Written in terms of momentum, the expression ξ simplifies to
ξ = 1/(p2 + m2). In Fig. 4 the expressions above have been plotted for various momenta of incident µ’s
in liquid argon (LAr) and cut-off energies for knock-on electrons. The plots indicate that the production of
energetic (> 1 MeV) δ rays is very weakly dependent on the incident particle’s momentum.

Figure 4. Left Eq. 12 with various µ momenta, and right Eq. 13 at various cut-off kinetic energies

2. Simulation and Analysis

2.1. The Detector. The detector geometry used was that of a single phase 10 kt module of the DUNE Far
Detector. It’s fiducial volume dimensions are 16x16x57 meters. The detector is split up into a top half and
a bottom half. The detector contains 300 Time Projection Chambers(TPC). See Fig. 5 for the counting
scheme. Each TPC has three sets of wires, two induction planes U and V and a collection plane Z. The
induction plane are orientated to make 35◦ angles. Each TPC contains 960 Z plane wires and 800 induction
plane wires each.

During simulation the LArSoft software package is responsible for drifting ionized charged towards the
wire. The drift length is 3.6 m. To properly install the electronics for DUNE’s Far Detector, the induction
plane wires are wrapped around their frame, thus giving charge deposits the ability to hit the same wire
twice.

The wire plane of interest is the collection plane. These wire are meant to do a calorimetric measurement
if the drifted charge. The collection plane, oriented in the Z-direction, has a wire pitch 4.79 mm.

2.2. Simulation. There were approximately 12,000 simulated µ’s total, at 12 different energies. These µ’s
were shot with a specific momentum and no spread in the All simulated particles started at the same exact
spot: (100,100,10) centimeters, which equates to starting in TPC 9 a little inside the detector. For a 1 GeV
µ the event display is given in Fig. 6.

The LArSoft software package is responsible for drifting the ionized charge to the wires. To get the
full deposited energy from the µ to drift to the wires longitudinal and transverse diffusion and well as
recombination were all turned off. In addition the electron lifetime was elongated. To get the energy loss as
calculated by GEANT4 the steps onere set to include every voxel boundary crossing in the detector.

Simulations of moderate energy electrons (0.2 GeV to 1 GeV) averaged to have a peak memory usage of
1100 MB and lasted around 30 sec. However, the higher energy µ’s, (> 10 GeV), which also made it through
the entire detector, varied largely in the peak memory usage from 900 MB to 9000 MB and typically lasted
120 sec.
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Figure 5. Orientation is
from beam, how TPCs
are counted in simulation

Figure 6. 1 GeV µ event display, the slope is
due to Coloumb scattering

2.3. Analysis. The analysis was done using MCTruth from the MCParticles. In order to process the
information, data from the ART files was packaged into an ntuple. Two ntuples were created, one that
stored the energy deposition information and one that stored the energy loss information. The information
for charge deposits on wires was stored in the sim::IDE data format and the data for the energy loss in the
MCTrajectory points format. The analyis module used was dervied from the AnalysisExample module.

2.3.1. Energy Deposition. For each wire, the charge deposited on the wire was summed up, converted to
energy and divided by the µ track length as seen by that wire.To minimize the momentum loss, as to
make the use of a Landau distribution fit most appropriate only the first twenty wires were chosen to fill
a histogram. A fit was performed over two ranges, one the focused on fitting the maximum and one that
focused on fitting the full-width half maximum. These two fits were made to reconcile the systematic error
introduced in trying to fit a a Landau distribution to distribution that is not completely Landau distributed.
The average of these two fits was used as the GEANT4 prediction and their difference as the systematic
error.

Figure 7. 10 GeV µ charge de-
posit distribution for first 20 wires

Figure 8. 10 GeV δ ray shoulder
and muon track with δ rays present

To elaborate on why the energy deposition distribution are not perfectly Landau distribute note that
the Landau distribution describes energy loss of a single µ with a specific momentum. However, even
travelling two wires introduce a change in the µ momentum. Consequentially the histogrammed distribution
is inherently non-Landau. Additionally, focusing on Fig. 8, due to energetic enough δ rays wires collect
ionized charge from both the µ and the δ ray effectively doubling the energy deposition on that wire. This
is what introduces the shoulder and the distortion from the Landau shape.

Since the µ losses energy as it travels the first 20 wires, it would be false to report the plotted momentum
as the initial momentum. Instead, using 1 the average energy lost was found, multiplied by the distance
traveled to and divided by 2 to get the average energy lost along the track of that wire. This was then
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Figure 9. 200 MeV µ true energy
loss in DUNE Far Detector

Figure 10. Total energy loss in
DUNE Far Detector

subtracted from the initial momentum and the new value used as the plotted point. This method introduces
an error of less than 1% as opposed to finding the energy using Einstein’s equations.

2.3.2. Energy Loss. Another difference between the energy loss and energy deposition is the fact the the
charge is drifted to the wires by the LArSoft software package for LAr detectors, whereas the energy loss
is purely GEANT4. This means that LArSoft could introduce an error when finding MPV’s from energy
deposition distributions. GEANT4 simulates in steps where each step is recorded as the µ crossing a voxel
boundary. Voxels have a side length of 30o microns. Taking scattering into consideration, the average
amount of steps between two wires was taken to be 17. However, because slower particles scatter more,
meaning the crossed voxel boundaries more often, their measure path was shorter than that of the faster
particles. Therefore a analytical calculation was done for the given momentum shifted back as previously
described. Note that this also introduces an error as the MPV of the average momentum is not the same as
the average MPV of the momentum range. However, the introduced error is again less than 1%.

Again a histogram was filled for every 17 steps dividing the energy lost by the path length traveled. The
same fits were performed, using two fits as opposed to one follows the reason described in Sec. 2.3.1. The
average was again taken as the GEANT4 predicted value and the difference as the systematic error.

As expected this distribution does not have the δ ray shoulder as observed in the energy deposition
distribution.

2.3.3. Total Energy Loss. A small study was done to look into the the energy loss distribution of moderately
high-energy to high-energy µ’s through out the entire detector. The moderately high-energy µ’s still retain
a sharp peak and a long tell reminiscent of a Landau distribution, but as the momentum increases the
distribution smears out. This is do to the radiative losses. Which means that using energy deposition
measurements to estimate incident µ energy is impractical as the big fluctuations in energy lost don’t allow
for good identification.

2.4. Results. Fig. 11 contains both analytically predicted and GEANT4 predicted values. The black
points should be compared with, and the green points should be compared with the blue triangles. Both sets
follow the LVB shape, however the GEANT4 predictions are consistently ∼ 2% higher than the analytical
predictions. Efforts were made to justify the discrepancy by comparing the values for variable used in
GEANT4 and in the analytical formulas, however the change is adjusting to the same values gave a correction
of less than 1%. This lead to trying to further understand the formulae. Specifically the Landau’s constant
term is of interest. Its derivation is ambiguous and literature states it’s value has changed in the past.

3. Conclusion

An investigation into the agreement of the GEANT4 models with the analytical models was made. The
simulation predicted values follow the shape of the analytical models but sits roughly 2% above it. This
small different is not alarming and is even surprisingly good agreement, however the interest is in figuring
out what has introduced this discrepancy. Some ideas include comparing GEANT4 predictions to other
simulation software such as FLUKA or MARS15. Another approach might be to get the average form the
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Figure 11. GEANT4 and analytical predictions compared from both energy deposition
and energy loss

the energy deposition and loss distributions and comparing these to the Bethe-Bloch predict value. However
the main course of action remains to resolve any possible bug in the simulation that could possible account
for the 2% difference.

Since δ rays are fairly independent of the mu momentum and high-energy µ’s have very large fluctations
these to methods of determining µ are implausible. A literary search showed that ideas proposing to count
the number of electromagnetic showers along a µ track might be a feasible method of approach.


