

Binary Neutron Star rate predictions from observations of dwarf galaxies

Karen Pérez Sarmiento, *Macalester College* Supervisors: Alex Drlica-Wagner and Marcelle Soares-Santos SIST Final Presentations 15 August 2017

Macalester College

Motivation

Binary Neutron Stars (BNS) mergers are expected to produce:

Motivation

Binary Neutron Stars (BNS) mergers are expected to produce:

• Gravitational Wave (GW) signals, detectable with GW interferometers (e.g. LIGO)

Motivation

Binary Neutron Stars (BNS) mergers are expected to produce:

• Gravitational Wave (GW) signals, detectable with GW interferometers (e.g. LIGO)

• Electromagnetic signatures, observable with telescopes (e.g. DECam at Blanco Telescope).

What is a Binary Neutron Star (BNS)?

NASA/Goddard Space Flight Center/Dana Berry

- Gravitationally bound system of two neutron stars.
- A neutron star is the remnant of a core-collapse supernova for

 M_{zams} < 25 M_{\odot} .

Binary Neutron Star Merger

Merger is the result of the shrinking of the distance between the neutron stars due to emission of gravitational waves.

They are rare events (not detected yet).

NASA

Electromagnetic signatures of BNS

R-process nucleosynthesis

Rapid neutron capture (r-process) is the process by which heavy radioactive elements are formed (Metzger et al 2010).

Borg and Brennecka 2014.

Reticulum II

- Dwarf galaxy in the local group.
- High-resolution spectra analysis of the nine brightest members of Ret II done by Li et al 2016.
- A promising mechanism to explain metal abundance in Ret II is a binary neutron star merger.

High Resolution Spectroscopy on Reticulum II

Seven of the stars have high **neutron-capture element abundances**, **consistent with r-process pattern.**

🛟 Fermilab

Goal

To calculate a lower limit to the **astrophysical rate** of **Binary Neutron Star Mergers** from the event in the dwarf galaxy Reticulum II.

To analyze the observational selection effects of LIGO.

Predict number of observable events with LIGO

Based on the event in Reticulum II: At least 1 event observed in 13 dwarf galaxies (galaxies with high-resolution spectroscopy analysis) in the timescale of a few Gyr.

$$\frac{1 event}{\left(\sum_{n=1}^{13} M_*\right) \times \left(T_{universe} - T_{event}\right)} \approx 10^{-15} M_{\odot}^{-1} yr^{-1}$$

Based on the event in Reticulum II: At least 1 event observed in 13 dwarf galaxies (galaxies with high-resolution spectroscopy analysis) in the timescale of a few Gyr.

$$\frac{1 event}{\left(\sum_{n=1}^{13} M_*\right) \times \left(T_{universe} - T_{event}\right)} \approx 10^{-15} M_{\odot}^{-1} yr^{-1}$$

Based on the event in Reticulum II: At least 1 event observed in 13 dwarf galaxies (galaxies with high-resolution spectroscopy analysis) in the timescale of a few Gyr.

$$\underbrace{1 event}_{\left(\sum_{n=1}^{13} M_*\right) \times \left(T_{universe} - T_{event}\right)} \approx 10^{-15} M_{\odot}^{-1} yr^{-1}$$

Based on the event in Reticulum II: At least 1 event observed in 13 dwarf galaxies (galaxies with high-resolution spectroscopy analysis) in the timescale of a few Gyr.

$$\frac{1 event}{(\sum_{n=1}^{13} M_*) \times (T_{universe} - T_{event})} \approx 10^{-15} M_{\odot}^{-1} yr^{-1}$$

Assumption: Number of BNS mergers scales up with stellar mass!

Two methods to approximate galactic stellar mass / luminosity

• Schechter Mass Function:

Yields spatial density of galaxies as a function of their stellar mass.

 Galaxy catalog of nearby universe (<200 Mpc):

To estimate luminosity (proxy for stellar mass) at different distances.

Schechter Mass Function

$$\phi(M) = b \times \phi^* \ln (10) [10^{b(M-M^*)}]^{(1+\alpha)} \exp[-10^{b(M-M^*)}]$$

- M* determines where the mass function changes slope
- M is the mass
- ϕ^* is the normalization
- α is the slope for fainter, lower mass galaxies.

Multiplying the function by 10^{M} and integrating for the limits 10^{6} - 10^{12} M_{\odot} yields an estimate of the stellar mass in 1 Mpc³.

Building galaxy catalog to estimate stellar mass

- Initial catalog put together by Jim Annis.
 - i-Band < 15.9 catalog of galaxies over the whole sky.
 - 4 catalogs used to update the distances:
 - EDD
 - NED-D
 - NED
 - SDSS DR12
 - The catalog has
 - RA, Dec, redshift
 - Distance
 - i-magnitude, g-i color
 - Absolute magnitude
 - Stellar mass

$$mass = \frac{M}{L} - 0.4(M - 4.58)$$
$$M/L = -0.68 + 0.7(q - i)$$

Taylor et al (2011) Annis (2016)

Building galaxy catalog to estimate stellar mass

Artificial features around galactic plane and SDSS footprint due to difference in catalog source for redshift and color.

Building galaxy catalog to estimate stellar mass

I worked on rebuilding the catalog (<200 Mpc) to eliminate artificial features:

I used 2MASS Extended Source Catalog as the base catalog and added distances from other surveys in the following preferential order:

Results from New Galaxy Catalog

21 8/15/17 Karen Pérez Sarmiento | SIST Final Presentations

Results from New Galaxy Catalog

Integrated number of BNS merger event rates per year per pixel

Comparison with literature values

- Rate with Schechter Function approach = 286 Gpc⁻³yr⁻¹
- Rate with Galaxy catalog approach = 135 Gpc⁻³yr⁻¹

🛠 Fermilab

Rate of BNS merger events

LIGO observational selection effects

LIGO has observational selection effects for certain regions of the sky (Chen et al 2016) : more sensitive to some regions of the celestial sphere than others.

This depends on:

- Declination (latitude) due to location of interferometers

 Right Ascension (longitude) due to nonuniform daily and annual cycle.

LIGO observational selection effects

‡ Fermilab

LIGO Hanford & Livingston network antenna pattern for 09/14/2015

LIGO observational selection effects

26 8/15/17 Karen Pérez Sarmiento | SIST Final Presentations

Predicting observable rates of BNS with LIGO

Multiply LIGO sensitivity map (for every month and rates map.

Predicting observable rates of BNS with LIGO

We get an expected number of observable events with LIGO of ~2.4 $yr^{-1}.$

Integrated observable number of BNS merger events with LIGO per pixel for 2017

Literature comparison

Rate of BNS merger events

Future steps

- Build LIGO sensitivity maps for sources at different distances in order to make a better prediction of the number of observable BNS merger events.
- Consider DECam footprint and use this work to inform future EM follow-up.

References

- 1. Annis, J., et al. Private communication (2015).
- 2. Bechtol, K., et al. ApJ 807, no. 1 (2015): 50.
- 3. Chen, H. Y., et al. ApJ 835, no. 1 (2017): 31.
- 4. Conselice, C. J., et al. ApJ 830, no. 2 (2016): 83.
- Coward, D. M., et al. MNRAS 425, no. 4 (October 1, 2012): 2668–73.
- 6. Fong, W., et al. Ap J 815, no. 2 (2015): 102.
- 7. Ji, A. P., et al. ApJ 830, no. 2 (2016): 93.

Acknowledgements

I would like to thank my project advisors Marcelle Soares-Santos and Alex Drlica-Wagner for their guidance and mentorship througout this project.

I would also like to thank Hsin-Yu Chen and Jim Annis (Dark Energy Survey collaborators) for their invaluable input.

Finally, special thanks to the SIST committee and mentors: Sandra Charles, Elliot McCrory, Judy Nunez, Bill Freeman, Camille Ginsburg and Raul Campos.

Collaborations / Partnerships

‡Fermilab

Office of Science

DARK ENERGY SURVEY MACALESTER COLLEGE

