
1

Digitization of Analog Signals using a Field

Programmable Gate Array (FPGA)

Daniel Aguilera-Amaya

Illinois Institute of Technology

SIST 2017, Fermilab National Accelerator Laboratory

Supervised by Dr. Vadim Rusu

August 17, 2017

2

Abstract:

The Mu2e experiment is looking to detect a neutrino-less muon to electron conversion. The

detection of such a rare event will hint towards previously unknown physics as such an event is

dynamically suppressed by the Standard Model [1]. Detecting such an event is not easy and the

experimental data must be digitized accurately to minimize error. Part of the digitization is being

done with “of-the-shelf” analog-to-digital converters (ADC). To reduce cost and the number of

components that could fail due to radiation exposure, it would be best to implement most if not all

integrated circuits within the FPGA. This report explores the idea of designing and implementing

an ADC within the FPGA.

Introduction:

 Over the last half a decade or so,

Mu2e has been developing a detector to

detect a neutrino-less muon to electron

conversion. Such an event would be evidence

of Charged Lepton Flavor Violation (CLFV).

The tracker is the device that will track any

particle, including high energy electrons, and

send out information to data acquisition. But

how does the tracker do this?

 To detect such events, the tracker uses

metalized Mylar drift tubes (Anode), which

are filled with a 20:80 mixture of Ar and CO2

gas and have a high voltage, gold-plated,

tungsten sense wire (Cathode) running

through the center [2]. An example of the

straws can be seen in figure 1. Every time a

charged particle passes through a straw, the

gas inside will ionize. Due to the electric field

created by the anode and cathode, the

negatively charged particles move towards

the sense wire, creating an electron

avalanche. This process generates a signal

large enough to be differentiated from noise

and be digitized.

Figure 1: Side view of straws (Left) A full panel

with 96 straws (Right) [2]

 The digitization process starts with

the preamps, which are located at both ends

of the straw. Each preamplifier, or preamp,

will shape and amplify the signal coming

from the sense wire. From the preamps, the

3

signals go through distinct Schmidt triggers

before going to the time-to-digital converters

(TDC). The TDCs measure the time

difference between arrival times of the

signals with a time division resolution of

100psec [3]. The time difference is the used

to estimate the position in which the event

occurred at along the straw for pattern

recognition. Also from the preamps, the

signals are summed up and the resulting

signal is fed into the input of an analog-to-

digital converter (ADC). The ADC will

digitize the amplitude of the analog signal to

determine the change in energy as it passed

through multiple straws [3]. Knowing the

change in energy and its path, we can

determine the particle’s energy and

determine what kind of particle it was. Once

the analog signal has been digitized, it will be

sent on to the Output Control & Buffer,

Readout Controller (ROC), and lastly to Data

Acquisition (DAQ). Figure 2 shows the

system level layout of the digitization

process.

Figure 2: Digitization high level [3]

 The current setup works well, but

because the tracker will be in vacuum, all the

electronics will be inside the tracker.

Consequently, the electronics will be

exposed to prolonged periods of radiation.

Radiation can affect the programmability and

even functionality of an integrated circuit

(IC). To minimize the effects of the radiation

two things can be done: changed failing

components as needed or buy components

that can withstand prolong exposure to

radiation. However, buying an FPGA that

can withstand large amounts of radiation and

programming the “off-the-shelf” ICs into it

can keep the cost down while minimizing the

possibility of components failing. In the

current setup, the ADC is the only “off-the-

shelf” IC. By using low voltage differential

signaling (LVDS), we can implement the

ADC functions into the FPGA.

Materials:

 The materials used for this research

were all part of the samrtfusion2 starter kit.

The kit used Microsemi’s M2S050-FGG484

FPGA. To interact with the FPGA, the starter

kit used Emcraft Systems’ extension board

which contained a breadboard area. To

communicated with and program the FPGA,

the kit came with a FlashPro4 serial

programmer. The kit can be seen in figure 3.

4

Figure 3: FPGA & Extension Board (Top)

FlashPro4 Programmer (Bottom)

 In addition to the hardware, software

was a big part of this research. To write the

VHDL code, compile the code, and program

the FPGA, it was necessary to use

Microsemi’s Libero v11.8 software. Libero

made it simpler to program the FPGA as it

takes care of placing and routing and

allocating resources. A diagram of the initial

system for sampling can be found in

appendix A. Additional software used was

ModelSim 5.4c and SoftConsole 4.0.

ModelSim was used to run simulations to

identify issues regarding synchronization and

timing. Lastly, SoftConsole was used to run

the code using the programmed FPGA to aid

in debugging and to read information from

RAM.

Methods:

 To sample an analog signal, a

digitizing scheme needs to be selected. For

this project LVDS was chosen because it uses

less power which means less heat generated.

The way LVDS works is very simple; it has

two inputs, one is the analog signal to be

sampled and the other is the sampling clock.

LVDS will compare if the sampling clock

voltage level is below or above the analog

signal. If its above, then LVDS will output

logic low, and if it’s below then LVDS will

output logic high. Figure 4 shows LVDS in

action.

Figure 4: Sampling Clock Input (Yellow),

Analog Signal Input (Blue), LVDS Output

(Purple)

However, before LVDS can be used

to sample anything, a sampling clock must be

determined. Because the FPGA is a digital

device, the clocks generated through it will

be square-wave like. Unfortunately, this will

not work with the LVDS scheme. To fix this

5

issue, the sampling clock will go through an

RC filter that will turn the square-wave clock

into a triangle-like wave. The values for the

RC filter were chosen for a 3.5MHz sampling

clock. The capacitance for the RC filter

comes from the input and output pins. The

resistor was chosen through trial and error to

ensure that the voltage drop across the

resistor was not too large and that the

resulting sampling clock was as close to a

triangle wave as possible. Figure 5 shows the

before and after the sampling clock goes

through the RC filter.

Figure 5: Sampling clk generated by the FPGA

(Top) and sampling clk after the RC filter

(Bottom)

 With the appropriate sampling clock,

the analog signal was sampled. However, the

output of the LVDS at this point was still just

high or low logic. To turn the output into

useful information, it is necessary to sample

the output of the LVDS. The sample or

“count” being store to the random access

memory (RAM) is synchronous to the

sampling clock (3.5MHz). The secondary

sampling clock will define the resolution of

the ADC as the ratio (secondary/primary) of

the clocks is the number of discrete voltage

levels. For this setup, it the secondary clock

was chosen to be 350MHz for a resolution of

100 discrete voltage levels. The 350MHz

secondary sampling clock will look at the

LVDS output and counts how many clocks

cycles the output was high. The count stored

to RAM will be a number between zero and

100. This process will repeat until the 9-bit

RAM is fully populated with 512 samples.

Once the RAM is filled up with count

samples, it is possible to read them out and

turn them into voltage levels. However, to do

this it is necessary to use a program called

Termite, which allows for the serial readout

of the data stored in the RAM. Using Termite

and SoftConsole to run the program, samples

were exported from the RAM into an excel

spread sheet. From here the samples can be

analyzed and turned into voltage values. The

simplest way to do this is to take each count

and turn into a ratio between the count and

the highest possible count (count/countMax).

6

To turn that into a voltage level, multiply the

ratio with the peak-to-peak voltage. This will

give us 2^9 voltage samples.

Results & Discussion:

With the samples now as voltages, it

is possible to plot them in sequential order

(sample 1 to sample 512). Figure 6 shows the

resulting digitized waves for a couple

different frequencies sine waves.

Figure 6: A period of a 50KHz sine wave sampled using FPGA (Top Left) Two periods of a 100KHz sine

wave sampled using FPGA (Top Right) Sampled 100KHz sine wave on top of ideal sine wave (Bottom)

However, from these plots one can

tell that the ADC set up is not perfect. The

current set up has two main issues that need

to be tackled: limitations on the analog

signal’s frequency and determining the

performance of the ADC.

The first issue is that the current set

up is limited to sampling analog signals with

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014

V
o

lt
s

(V
)

Time (s)

100KHz Sinewave Ideal Vs. Theoretical

IDEAL Sine Wave for Sample 18 Setup_0 Sample 18

7

frequencies lower than 350KHz without

reducing the sampling resolution. The reason

for this limitation is that the resolution is

directly proportional to the ration of

secondary sampling clock to primary

sampling clock. This becomes an issue

because the FPGA itself cannot produce a

secondary sampling clock higher that

350MHz that could work properly.

One way that this issue can be tackled

is to replace the limiting secondary clock

with something that can determine how long

the LVDS output was high level and when it

was low level. The current set up has the

secondary sampling clock keeping track of

how many clock cycles the output is high. An

improvement here would be to use TDC

within the ADC. Instead of counting the how

many clock cycles are high level, the TDC

will time stamp every time it sees a rising

edge and falling edge. With this information,

it is easy to determine for how long the output

of the LVDS was high level by looking at

difference between a rising edge and falling

edge. This will allow for sampling of signals

with much higher frequencies. However, one

downfall of this solution is that this set up

uses two separate RAMs (one for rising edge

and one for falling edge). A diagram of the

TDC implementation is shown in appendix

A.

The second issue that can be seen

from the plots is that the samples can deviate

from what the theoretical values should be. In

figure 6, you can see the difference between

the ideal sine wave (Orange) and the sampled

sine wave (Blue). To determine whether

these deviations are acceptable or not, it is

necessary to quantify the performance of the

implemented ADC. A common way to

calculate the performance of an ADC is to

determine its integral non-linearity and

differential non-linearity. Integral non-

linearity (INL) is the maximum vertical

deviation of your sample from the

ideal/theoretical signal. Differential non-

linearity (DNL) in the other hand looks at the

width of every “bin” and compares it the ideal

width of an ideal ADC. The values

determined from IDN and DNL are always in

terms of least significant bit (LSB). This

allows direct comparison of INL and DNL of

different ADCs.

Determining the INL and DNL of the

ADC implemented will help determined a

few different things. One is that it will tell us

how well this ADC compares to the of-the-

shelf ADC that is being currently being used.

Similarly, the INL and DNL can be used to

determine the performance deviations as the

code is changed and as the hardware setup

changes.

8

Conclusion:

 As a proof of concept implementing the ADC within the FPGA is possible. However, there

are still improvements that need to be made to increase the resolution and accuracy of the ADC,

while minimizing the number of resources used within the FPGA. At the moment, 0.18% of all D

flip-flops, 0.22% of all look up tables, and 2.62% of all user input/outputs (I/O) are being used.

Since there are two FPGAs per panel, the FPGA only needs to digitize signals from 48 straws,

which means that the I/O usage percentage needs to be 2% or lower to cover all straws. In addition

to minimizing the use of resources, the performance of the programmed ADC needs to be

calculated to make sure that it is just as good as the of-the-shelf ADC before replacing it.

References:

[1] Glenzinski, Doug. (2016). Mu2e for Physicists. Fermi National Accelerator Laboratory

Mu2e for Physicists. [Online] Available: http://mu2e.fnal.gov/public/index.shtml

[2] Mukherjee, A. Wagner, B. Tracker for the Mu2e Experiment at Fermilab. Fermilab

Wilson Hall, 08/16/2013

[3] Tommaso, Vincenzi. 2015. Serial Communication for Mu2e Tracker Electronics. Mu2e

Collaboration, 15.

Acknowledgements:

 In closing, I would like to thank a few people that helped me through the duration of this

summer. First, thank you to my supervisor, Dr. Vadim Rusu, who took the time explain concepts

to me, guide me, and push me to grow in and out of the work place. I would also like to thank my

mentors, David Peterson and Donovan Tooke, for helping me prepare for presentations and talks.

Lastly, a big thank you to the SIST committee for giving me this opportunity to learn and grow

with Fermilab this summer.

http://mu2e.fnal.gov/public/index.shtml

9

Appendix A:

Initial set up to sample analog signals using LVDS and a secondary clock for the clock cycle count.

Proposed improvement to ADC by using TDCs for secondary sampling instead of using a secondary clock.

