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why bother with neutrino interactions?  Isn’t this too hard/
too different/ somebody else’s problem? 
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86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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long baseline neutrino oscillation experiment is difficult in 
practice:

simple picture is complicated by

- intrinsic νe component of beam

- degeneracy of uncertainty in detector response and 
neutrino interaction cross sections

- imperfect energy reconstruction

- νe versus νμ cross section differences 
need theory for σνe/σνμ, at ~% precision of measurement

and also 

- beam divergence and oscillation (near flux≠far flux)
aided by near detector but 

need theory for σνμ, at a precision depending on the 
experimental capabilities
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current paradigm: 

constrain neutrino interactions by 
- determining nucleon level amplitudes 
- parameterizing/measuring/calculating nuclear 

modifications

folk paradigms: 
constrain neutrino interactions by 
- starting at the quark level
- computing nuclear response

constrain neutrino interactions by 
- starting directly at the nuclear level
- parameterizing and measuring every cross section

“perfect theory”

“perfect expt.”
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in any paradigm: 
near detector has access to primarily νμ neutrinos

νe appearance signal is directly impacted by νμ/νe cross 
section differences
- kinematics
- 2nd class currents (G parity violation)
- radiative corrections (QED and EW)
- signal definition

having talked the talk, do some walking:
- νμ/νe in the time reversal process (μ p → ν n)
- nucleon input uncertainty (e-p, ν d → ν n)
- radiative corrections at GeV (e-p)

nuclear corrections: see talks of W. Van Order, S. Pastore, A. 
Ankowski, N. Jachowicz, A. Lovato.  experiment: S. Bolognesi; 
lots of references: NUSTEC white paper 1706.03621
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beyond neutrino oscillations related applications relying on 
quantitative nucleon structure:
- fundamental constants (probable 7 sigma shift in Rydberg) 
- sigma terms and WIMP-DM direct detection
- gA and BBN
- …

entering a precision realm where percent level corrections to 
nucleon structure need to be calculated, not just estimated

QED is “easy”.  But QED + nucleon structure is “hard”

Notes:
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topic 1. amplitude analysis and z expansion

first, e-p elastic scattering

second, ν-n CC scattering
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recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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Letusbrieflyreview
therenormalizationforthescalartriplet.The1PItwopointfunctionsfor

6Followingtheconventionsof[77],bareLagrangian
fieldsand

parametersaregiven
by(W

a
µ)
bare=

(Z
W
2
)
1/2W

a
µ,

g
bare

2

=
Z
W
1
(Z

W
2
)
�3/2g2.

11

e�

e�

⇢(r)

d�

d⌦
=

✓
d�

d⌦

◆

pointlike

|F (q2)|2

for the relativistic, QM, case, define 
radius as slope of form factor

F (q2) =

Z
d3r eiq·r⇢(r)

=

Z
d3r


1 + iq · r � 1

2
(q · r)2 + . . .

�
⇢(r)

= 1� 1

6
hr2iq2 + . . .

hJµi = �µF1 +
i

2mp
�µ⌫q⌫F2

GE = F1 +
q2

4m2
p

F2 GM = F1 + F2

r2E ⌘ 6
d

dq2
GE(q

2)

����
q2=0

12

(up to radiative corrections)



Radius extraction requires data over a Q2 range where a simple 
Taylor expansion of the form factor is invalid
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data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010)
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coefficients in rapidly 
convergent expansion encode 
nonperturbative QCD

tcut

F (q2) =
X

k

ak[z(q
2)]k

experimental 
kinematic region

That’s ok: underlying QCD tells us that Taylor expansion 
of form factor in appropriate variable is convergent

q2

particle thresholds

z

5

where ni is the number of events in the i-th bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and there
are similar sized discrepancies in the central values. A
similar exercise was performed in Refs. [64, 73, 74], and
similar results were obtained. Having reproduced the
original analyses to the extent possible, we will proceed
with the updated constants as in the final column of Ta-
ble I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [30],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (12)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t

0

. toptimal

0

is defined in Eq. (14).

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (14)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|

max

= 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [75], FA ⇠ Q�4, implies the series of four sum
rules [34]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = k

max

� 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [34] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [30] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fall-o↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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Figure 13. Status of the proton radius puzzle circa 2016, with prospects for new data. The upper pane is
reproduced from Fig. 1. The middle pane shows updated results. The cyan points give updated fits to electron
scattering data using z expansion (final two points in Fig. 4, from Ref. [15]. The black point represents the 2014
CODATA [1] combination of hydrogen and electron-proton scattering determinations. The red point is from
the 2016 CREMA muonic deuterium Lamb shift measurement using the regular hydrogen-deuterium isotope
shift [73]. The bottom pane shows expected sensitivities of anticipated results in: regular hydrogen [78] (blue);
low-Q2 electron-proton scattering [90] (cyan); and muon-proton scattering [92] (magenta). See text for details.

4.5 Summary of status and prospects

Figure 13 displays the current status of the proton radius puzzle. Compared to Fig. 1, the muonic
hydrogen error bar has been increased to reflect updates and a revised treatment of TPE in Ref. [71],
and the new muonic deuterium data point has been included. The electron scattering results reflect
the treatment of form factor nonlinearities and more conservative systematic errors from Ref. [15]. In

update: Beyer et al. (Science, 2017)
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second, ν-n CC scattering
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Start with the basic process

n p

μ-νμ

poorly known axial-vector form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

A common ansatz for FA has been employed for the last ~40 years: 

5

C. Dipole fits

Our results for the axial form factor will di↵er from
the analyses in the original publications. These di↵er-
ences arise from a number of sources: di↵erent numerical
inputs in Table I; di↵erences in the statistical analysis
(such as fits to the binned Q2 distribution using the flux
representation (5) in place of unbinned likelihood fits);
and di↵erences in axial form factor shape assumptions.
In order to understand these di↵erences, we begin by re-
stricting attention to the dipole ansatz,

F dipole

A (q2) = FA(0)

✓
1� q2

m2

A

◆
�2

, (12)

and compare to fits in the orginal publications.8

Table II gives results for fits to the dipole ansatz
(12) for the axial form factor. The table shows “flux-
independent” results from the original experiments,
which performed unbinned likelihood fits to event-level
data. Our results represent a likelihood fit to the binned
Q2 distribution of events obtained with a neutrino flux
given by smoothing the binned reconstructed neutrino
energy distribution (divided by theoretical cross section),
as described in Sec. II B. Fits to the binned log-likelihood
function are found by minimizing the function

�2log (L (µ(FA))) = 2
X

i


µi � ni + nilog

✓
ni

µi

◆�
,

(13)
where ni is the number of events in each bin and µi is
the theory prediction (10) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.9

Because of the di↵erence in fit techniques, we do not
expect precise agreement even when the original choices
of constants in Table I are used. However, discrepancies
in central values for each case are below the 1� level, and
the size of the errors are approximately equal. Having
reproduced the original analyses to the extent possible,
and having updated constants as in Table I, we turn to
an investigation of axial form factor shape assumptions.

III. z EXPANSION ANALYSIS

Having fixed the datasets and analysis procedure, let
us investigate the implications of form factor shape as-
sumptions.

8 A similar exercise was performed in Refs. [3, 4, 29].
9 Errors determined by a covariance matrix analysis are in good
agreement; an explicit comparison of the two error determina-
tions is given in Sec. VI.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges and
choices of t

0

.

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

A. z expansion formalism

Let us recall that the axial form factor obeys the dis-
persion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (14)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [62],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (15)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (16)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.
In any given experiment, the finite range of Q2 implies

a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (17)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2. and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (18)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III

rA = 0.674(9) fm

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

Typically quoted uncertainties are (too) small (e.g. compared to proton 
charge form factor!)

Inconsistent with QCD. 
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n p

μ-νμ

p p
deuteron

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

• small statistics, ~3000 events in world data

• small(-ish) nuclear effects

• small(-ish) experimental uncertainties 
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80
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tion, the following assumptions are made: (1) time-
reversal invariance and charge symmetry, (2) partially con-
served axial-vector current (PCAC} for the small pseudo-
scalar term, and (3) isotriplet-conserved-vector-current
(CVC) hypothesis.
The first assumption, which requires all form factors to

be real, yields Eq——F~——0, leading to the absence of second
class currents. With the second assumption, Fp(Q ) is
given by

20-

Fp(Q )=2M Fg(Q~)/(Q +m ),
where

'0 2
Q' (Gev')

FICx. S. The Q distribution for the selected quasielastic
events. The solid curve represents the differential cross section
of quasielastic scattering for the neutron in deuteron.

Q'= (P —P„)'—(E„—E„)' .
The contribution to the cross section from this term in the
energy region E„&5 GeV is less than 0.1%, and conse-
quently this term is neglected. The third assumption re-
lates Fz and Fz to the isovector Sachs electric and mag-
netic form factor, Gz and G~ determined from electron-
scattering experiments as follows:

near /=0 . The shaded area corresponds to the addition-
al events found from the rescan. Using the average of the
events with P between —90 and 126 (dashed line), we
calculated the event bias to be S%%uo. This does not neces-
sarily represent the true loss of events because of the
three-point plot per event. We examined the true event
loss from the event bias in Fig. 4 by using a Monte Carlo
simulation. This event loss amounts to 8% and is not
recovered by rescanning (shaded area). Hence, a correc-
tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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12

with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are

BNL : [ā
1

, �2LL] =

(
[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā
1

, �2LL] =

(
[2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā
1

, �2LL] =

(
[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0

BBB@

1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].
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with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid
with the original Singh model as well as the free neutron
model in Fig. 6. The Shen et al. model deviates sub-
stantially from the free-neutron result at the ⇠ 20% level
over a broad Q2 range. These models do not constitute
an estimate of the uncertainty on deuteron corrections,
but suggest an avenue for future work even if there are
no future measurements on deuterium.

Assuming an energy independent, but Q2 dependent,
deuteron correction, the change in the fit results can
be compared. For illustration, we employ the results
of Ref. [70] at E⌫ = 1GeV, and limit attention to
Q2  1GeV2, i.e., the configuration of Table V and
Eq. (25). Shape parameter and minimum �2LL values
are
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, �2LL] =
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[1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,
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FNAL : [ā
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[1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
.

(30)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. In our
final analysis, we modify the original fits displayed in Ta-
ble V. First, we allow a correlated acceptance correction
as in Eq. (28). Second, we include a 10% error added
in quadrature to statistical error in each Q2 bin to ac-
count for residual deuteron or other systematic correc-
tions, as described at the end of Sec. IVB. With these
corrections in place, we perform a �2 fit to all data up to
Q2 = 1GeV2. The neglect of data above Q2 = 1GeV2

has only minor impact on the extraction of FA(q2), and
allows a simple treatment of these combined uncertain-
ties with full covariance using a �2 fit.

As an alternative, we also provide a log-likelihood fit to
the data up to Q2 = 3GeV2, but without inflated errors
to account for deuterium and other residual systematics.
This has the benefit of including data over the entire
kinematic range, but omits sources of systematic error
that would need to be treated separately.

12 See also Ref. [80].

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit
to the three datasets. We choose Na = 4 free parameters
with t

0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (16). The acceptance correction free parameter is
independent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are13

[a
1

, a
2

, a
3

, a
4

] = [2.30(13),�0.6(1.0),�3.8(2.5), 2.3(2.7)] .
(31)

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
�2({ak}), are

E
diag. = [0.0154, 1.08, 6.54, 7.40] . (32)

Note that (E
diag.)i ⇡ (�ai)2, reflecting approximately

Gaussian behavior. The four-dimensional correlation
matrix is

Cij =

0
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1 0.350 �0.678 0.611

0.350 1 �0.898 0.367

�0.678 �0.898 1 �0.685

0.611 0.367 �0.685 1

1

CCCA
. (33)

and as usual the error matrix is given by Eij = �ai�ajCij .
This description can be systematically improved when
and if further data or externally constrained deuterium
models become available. The form factor is plotted ver-
sus Q2 and versus z in Fig. 7, and compared with a pre-
vious world average dipole form factor from Ref. [53]
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central
values and 1� errors determined from �(�2LL) = 1 are

[a
1

, a
2

, a
3

, a
4

] = [2.28(8), 0.25(95),�5.2(2.3), 2.6(2.7)] .
(34)

The diagonal entries of the error matrix are

E
diag

= [0.00635, 0.781, 4.49, 6.87] , (35)

13 The complete specification for the form factor involves the
normalization gA = �1.2723 from Table I; the pion mass
m⇡ = 0.14GeV employed in the specification of t

cut

= 9m2

⇡
in Eq. (12); and the choice t

0

= �0.28GeV2. The remaining co-
e�cients, a

0

, a
5

, a
6

, a
7

and a
8

, are determined by FA(0) = gA,
and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: [a

0

, · · · , a
8

] =
[�0.759, 2.30,�0.6,�3.8, 2.3, 2.16,�0.896,�1.58, 0.823].

• FA with complete error budget: 
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [54]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

• order of magnitude larger uncertainty compared to historical dipole fits

• impacts comparison to other data, e.g. pion electroproduction, muon 
capture
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown are results using dipole axial form factor with
axial mass mA = 1.014(14) GeV [53].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [53]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [30].
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [54].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [55] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas nuclear model with z expansion axial form factor
extracted from deuterium data. MINERvA data uses an up-
dated flux prediction from [81]. Also shown are results using
the same nuclear model but dipole form factor with axial mass
mA = 1.014(14) GeV [54].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,
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for neutrinos and
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�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.

]2[GeV2Q
0 0.5 1 1.5 2

]2
/G

eV
2

 [c
m

2
/d

Q
σd

0

5

10

15

20

-3910×

GENIE RFG z-expansion

GENIE RFG dipole

MINERvA Data

FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [55] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas nuclear model with z expansion axial form factor
extracted from deuterium data. MINERvA data uses an up-
dated flux prediction from [81]. Also shown are results using
the same nuclear model but dipole form factor with axial mass
mA = 1.014(14) GeV [54].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [55]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [54]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code will also be available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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for neutrinos and
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [56] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas (RFG) nuclear model with z expansion axial form
factor extracted from deuterium data. MINERvA data uses
an updated flux prediction from [82]. Also shown are results
using the same nuclear model but dipole form factor with
axial mass mA = 1.014(14) GeV [55].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [56]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [55]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15 The z expansion will be available in GENIE production release
v2.12.0. The code is currently available in the GENIE trunk
prior to its o�cial release. The module provides full generality
of the z expansion, and supports reweighting and error analysis
with correlated parameters.
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discriminating nuclear models

n p

μ-νμ

poorly known axial form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

want to extract nuclear and flux effects 
from this comparison: but large 
nucleon level form factor uncertainty

ab initio methods and extensions, e.g. 
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topic 2. muon capture
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1 Introduction54

Muonic hydrogen, the electromagnetic bound state of a muon and proton, is a theoretically pristine atomic55

system. As far as we know, it is governed by the same interactions as ordinary hydrogen, but with the56

electron of mass 0.511 MeV replaced by the heavier muon of mass 106 MeV, an example of electron-muon57

universality. That mass enhancement (⇠207) manifests itself in much larger atomic energy spacings and a58

smaller Bohr radius of 2.56⇥10�3Å. This places the muonic hydrogen size about halfway (logarithmically)59

between the atomic angstrom and the nuclear fermi (1 fm = 10�5Å) scale.60

Those di↵erences make muonic hydrogen very sensitive to otherwise tiny e↵ects such as those due to61

proton size and nucleon structure parameters governing weak interaction phenomenology. Indeed, muonic62

hydrogen Lamb shift spectroscopy [1, 2] has provided a spectacularly improved measurement of the proton63

charge radius that di↵ers by about 7 standard deviations from the previously accepted value inferred from64
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Weak muon capture in nuclei has provided a historically important probe of weak interactions and a69

window for studying nuclear structure. In particular, weak capture in muonic hydrogen is a sensitive probe70

of the induced pseudoscalar component of the axial current p ! n matrix element which is well predicted71

from the chiral properties of QCD. However, early experimental determinations of that pseudoscalar72

coupling, ḡ
P

,1 had, for some time, appeared problematic [7]. All ḡ
P

extractions from ordinary muon73

capture in hydrogen su↵ered from limited precision, while the more sensitive extraction from radiative74

muon capture [8] disagreed with ordinary muon capture and the solid prediction of Chiral Perturbation75

Theory (�PT) [9–13]. An important underlying contribution to this problem was the chemical activity of76

muonic hydrogen, which like its electronic sibling, can form molecular ions, (ppµ)+. The highly spin de-77

pendent weak interaction leads to very di↵erent capture rates from various muonic atomic and molecular78

states. Thus, atomic physics processes like ortho-para transitions in the muonic molecule, which flip the79

proton spins, significantly change the observed weak capture rates and often clouded the interpretation80

of experimental results in the 55-year history of this field. Unfortunately, the uncertainty induced by81

molecular transitions was particularly severe for the most precise measurements which were performed82

with high density liquid hydrogen targets, where, because of rapid ppµ formation, essentially capture from83

the molecule, not the pµ atom, is observed. This problem was resolved by the MuCap Collaboration at84

1The quantity ḡP is defined at the characteristic momentum q2

0

for muon capture, see Eqs. (8),(23) below.
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P

,1 had, for some time, appeared problematic [7]. All ḡ
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2 Muon capture theory update

The weak capture process, Eq. (1), from a muonic hydrogen bound state is a multi-scale field theory
calculational problem, involving electroweak, hadronic and atomic mass scales. In this section, we review
the essential ingredients of this problem before discussing the status of phenomenological inputs and the
numerical evaluation of the capture rate.

2.1 Preliminaries

For processes at low energy, E ⌧ m
W

, where m
W

⇡ 80 GeV is the weak charged vector boson mass, the
influence of heavy particles and other physics at the weak scale is rigorously encoded in the parameters
of an e↵ective Lagrangian containing four-fermion operators. For muon capture the relevant e↵ective
Lagrangian is

L = �G
F

V
udp
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�µ(1 � �
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)µ d̄�
µ

(1 � �
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)u + H.c. + . . . , (3)

where G
F

and V
ud

are the Fermi constant and the CKM up-down quark mixing parameter respectively (cf.
Table 2), and the ellipsis denotes e↵ects of radiative corrections. Atomic physics of the muonic hydrogen
system is described by the e↵ective Hamiltonian,
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where m
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m
p

/(m
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+ m
p

) is the reduced mass, �V
VP

accounts for electron vacuum polarization as
discussed below, and s

µ

, s
p

are muon and proton spins. The annihilation process is described by an
anti-Hermitian component of H [25]. Since the weak annihilation is a short-distance process compared
to atomic length scales, this anti-Hermitian component can be expanded as a series of local operators.
At the current level of precision terms beyond the leading one, �3(r), are irrelevant [25]. Relativistic
corrections to the Coulomb interaction in Eq. (4) are similarly irrelevant [26]. In both cases, neglected
operators contribute at relative order v2/c2 ⇠ ↵2, where v is the nonrelativistic bound state velocity.
Electron vacuum polarization enters formally at order ↵2, but is enhanced by a factor m

µ

/m
e

making it
e↵ectively a first order correction [27, 28].

Having determined the structure of the e↵ective Hamiltonian (4), the numbers c
i

are determined by a
matching condition with the quark level theory (3). The annihilation rate in the 1S state is then computed
from H to be

⇤ = G2
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ud

|2 ⇥ [c
0

+ c
1

F (F + 1)] ⇥ | 
1S

(0)|2 + . . . , (5)

where | 
1S

(0)|2 = m3

r

↵3/⇡ is the ground state wavefunction at the origin squared and F is the total spin
(F = 0 for singlet, F = 1 for triplet). Equation (5), with c

i

expressed in terms of hadronic form factors
(cf. Eq. (7) below), exhibits the factorization of the process into e↵ects arising from weak, hadronic and
atomic scales.
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2.2 Tree level calculation

Hadronic physics in the nucleon matrix elements of the vector and axial-vector quark currents of Eq. (3)
is parameterized as:3

hn|(V µ � Aµ)|pi = ū
n


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(q2)�µ+
iF

2
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u

p

+ . . . , (6)

where V µ � Aµ = d̄�µu � d̄�µ�
5

u, and the ellipsis again denotes e↵ects of radiative corrections. For
definiteness we employ the average nucleon mass m

N

⌘ (m
n

+ m
p

)/2. The form factors F
S

and F
T

are
so-called second class amplitudes that violate G parity and are suppressed by isospin violating quark
masses or electromagnetic couplings [30–33]. They would appear in the capture rate, Eq. (7) below,
accompanied by an additional factor m

µ

/m
N

relative to F
1

and F
A

. Similar to isospin violating e↵ects in
F

2

(0), discussed below in Sec. 2.4, power counting predicts negligible impact of F
S

and F
T

at the permille
level; we thus ignore them in the following discussion.

The c
i

in Eq. (5) are determined by matching the quark level theory (3) to the nucleon level theory (4),
using the hadronic matrix elements (6). This matching is accomplished by enforcing, e.g., equality of the
annihilation rate for µp ! ⌫

µ

n computed in both theories for the limit of free particles, with the proton
and muon at rest. For the coe�cients corresponding to singlet and triplet decay rates, this yields [16, 34]
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where the initial state mass is M ⌘ m
µ

+m
p

, the neutrino energy is E
⌫

⌘ (M2�m2

n

)/2M = 99.1482 MeV,
and the invariant momentum transfer is

q2

0

⌘ m2

µ

� 2m
µ

E
⌫

= �0.8768 m2

µ

. (8)

Since the matching is performed with free particle states, the quantities M , E
⌫

and q2

0

are defined inde-
pendent of the atomic binding energy, as necessary for determination of the state-independent coe�cients
c
i

of the e↵ective Hamiltonian (4).4

The amplitudes (7) can also be expressed as an expansion in �PT [12, 35–37]. However, the general
formulas in Eq. (7) allow us to more directly implement and interpret experimental constraints on the
form factors and do not carry the intrinsic truncation error of NNLO �PT derivations (estimated in
Ref. [37] as ±1%). For example, we may take the vector form factors F

1

, F
2

directly from experimental
data, rather than attempting to compute them as part of an expansion in �PT. No approximation is
yet made in Eq. (7), except for neglect of second class currents, as justified above. We investigate below
the restricted application of �PT to express F

P

(q2

0

) in terms of r2

A

and other experimentally measured
quantities.

3We choose a convention for the pseudoscalar form factor that is independent of lepton mass: FP (q2) = (mN/mµ)gP (q2),
in terms of gP (q2) used in Ref. [29]. Our sign conventions for FA and FP are such that FA(0) and all other form factors are
positive.

4In particular, a binding energy is not included in the initial-state mass M , but would anyways correspond to a relative
order ↵2 correction that is beyond the current level of precision.
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Figure 2: Example of an O(↵) �W exchange box diagram radiative correction to muon capture.

2.3 Radiative corrections

The electroweak radiative corrections to muon capture in muonic hydrogen, depicted in Fig. 2, were first
calculated in Ref. [16]. Here, we briefly describe the origin of such quantum loop e↵ects and take this
opportunity to update and reduce their estimated uncertainty. The computational strategy relies on
the well known electroweak corrections to (i) the muon lifetime [38, 39], (ii) super-allowed 0+ ! 0+ �
decays [38, 40, 41], and (iii) the neutron lifetime [42, 43].

Radiative corrections to weak decay processes in the Standard Model involve ultraviolet divergences
that can be renormalized, yielding finite phenomenological parameters such as the Fermi constant G

F

obtained from the measured muon lifetime [39] and the CKM matrix element |V
ud

| obtained from super-
allowed � decays (see Table 2). In terms of those parameters, the radiative corrections to the neutron
lifetime and the muon capture rate are rendered finite and calculable. We note that the matrix element
of the vector current is absolutely normalized at qµ = 0, corresponding to a Conserved Vector Current
(CVC): F

1

(0) = 1, up to second order corrections in small isospin violating parameters [44–46]. On the
other hand, the normalization of the remaining form factors appearing in Eq. (7) requires a conventional
definition in the presence of radiative corrections. This definition is specified at q2 = 0 by a factorization
requirement that expresses the total process as a tree level expression times an overall radiative correction.
For example, the neutron decay rate in this scheme involves the factor (1+3g2

A

)(1+RC), where (1+3g2

A

)
is the tree level expression with F

A

(0) = g
A

, and RC denotes the radiative corrections. By the definition
of g

A

, these corrections are the same for vector and axial-vector amplitudes, but are actually computed
for the vector amplitude. In that way, g

A

can be obtained from the neutron lifetime, used in conjunction
with V

ud

via the relationship [41, 42]

�
1 + 3g2

A

� |V
ud

|2⌧
n

= 4908.7(1.9) s . (9)

Alternatively, g
A

can be directly obtained from neutron final state decay asymmetries. We employ the
lifetime method here, because it is currently more precise.

In the case of muon capture, we have four form factors all evaluated at q2

0

: vector (F
1

), induced
weak magnetism (F

2

), axial-vector (F
A

) and induced pseudoscalar (F
P

). We define these form factors to
all have the same electroweak radiative corrections and explicitly compute those corrections for F

1

(q2

0

).
Short-distance corrections (which dominate) correspond to a renormalization of the relevant four-fermion
operator, and are automatically the same for all form factors. Long distance corrections, although not as
important, are incorporated through the form factor definitions in much the same way as g

A

is renormal-
ized by definition in neutron decay.

Given the above form factor definitions, their common total radiative correction is conventionally

8

expansion in small quantities: 
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- axial radius enters at first order in epsilon, so need all other first 
order corrections (to ~10%, for a 10% measurement of rA2)

- will see that other corrections are at first-and-a-half order; need to 
ensure against numerical enhancements (need these to ~100%)
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momentum expansion:

2.2 Tree level calculation
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n

)/2M = 99.1482 MeV,
and the invariant momentum transfer is

q2

0

⌘ m2

µ

� 2m
µ

E
⌫

= �0.8768 m2

µ

. (8)

Since the matching is performed with free particle states, the quantities M , E
⌫

and q2

0

are defined inde-
pendent of the atomic binding energy, as necessary for determination of the state-independent coe�cients
c
i

of the e↵ective Hamiltonian (4).4

The amplitudes (7) can also be expressed as an expansion in �PT [12, 35–37]. However, the general
formulas in Eq. (7) allow us to more directly implement and interpret experimental constraints on the
form factors and do not carry the intrinsic truncation error of NNLO �PT derivations (estimated in
Ref. [37] as ±1%). For example, we may take the vector form factors F

1

, F
2

directly from experimental
data, rather than attempting to compute them as part of an expansion in �PT. No approximation is
yet made in Eq. (7), except for neglect of second class currents, as justified above. We investigate below
the restricted application of �PT to express F

P

(q2

0

) in terms of r2

A

and other experimentally measured
quantities.

3We choose a convention for the pseudoscalar form factor that is independent of lepton mass: FP (q2) = (mN/mµ)gP (q2),
in terms of gP (q2) used in Ref. [29]. Our sign conventions for FA and FP are such that FA(0) and all other form factors are
positive.

4In particular, a binding energy is not included in the initial-state mass M , but would anyways correspond to a relative
order ↵2 correction that is beyond the current level of precision.
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1 +


g1, gA

�
+

p
✏


g2

�
+ ✏


r21, r

2
A, gP

�
+ . . .

sensitivity to momentum dependence in the capture process

in our power counting, rA2 competes with gP, and other 
well-determined quantities (g≡normalization, r2≡slope)

⇠ ✏

decay in flight [58]. The direct neutron decay asymmetry PDG g
A

average [43], 1.2723(23), is lower; but
most more recent experiments find values close to 1.276.

Our knowledge about the functional form of F
A

(q2) relies primarily on neutrino-deuteron scattering
data from bubble chamber experiments in the 1970’s and 1980’s: the ANL 12-foot deuterium bubble
chamber experiment [59–61], the BNL 7-foot deuterium bubble chamber experiment [62], and the FNAL
15-foot deuterium bubble chamber experiment [63, 64]. As mentioned in the Introduction, the original
analyses and most follow-up analyses employed the one-parameter dipole model of the axial form factor.
A more realistic assessment of uncertainty allows for a more general functional form. Using a z expansion
analysis [19], the uncertainty on the axial radius is found to be significantly larger than from dipole fits,

r2

A

(z exp., ⌫) = 0.46(22) fm2 . (17)

This value may be compared to a fit of scattering data to the dipole form, r2

A

(dipole, ⌫) = 0.453(23) fm2 [17].
Note that the value r2

A

(dipole) = 0.454(13) fm2 quoted in the Introduction is obtained by averaging this
neutrino scattering result with an extraction from pion electroproduction [17], r2

A

(dipole, electro.) =
0.454(14) fm2. As observed in Ref. [18], the electroproduction extraction is also strongly influenced by
the dipole assumption. A more detailed discussion of the electroproduction constraints is given in Sec. 5,
with the conclusion that further control over systematics is required in order to provide a reliable r2

A

extraction. The pion decay constant f
⇡

and pion nucleon coupling g
⇡NN

, along with r2

A

, are used to
determine the induced pseudoscalar form factor [11]

F
P

(q2

0

) =
2m

N

g
⇡NN

f
⇡

m2

⇡

� q2

0

� 1

3
g
A

m2

N

r2

A

+ . . . , (18)

where m
⇡

= 139.571 MeV is the charged pion mass. Two loop �PT corrections, indicated by the ellipsis
in Eq. (18), were estimated to be negligible, as long as the low energy constants involved remain at
natural size [13]. f

⇡

is determined from the measured rate for ⇡� ! µ�⌫̄
µ

(�), and its uncertainty is
dominated by hadronic structure dependent radiative corrections. For g

⇡NN

we take as default the value
g
⇡NN

= 13.12(6)(7)(3) = 13.12(10) [49, 50], where the first two errors are attributed to pion-nucleon
scattering phase shifts and integrated cross sections, respectively, entering the Goldberger-Miyazawa-
Oehme (GMO) sum rule for g

⇡NN

. The third error is designed to account for isospin violation and was
motivated by evaluating a subset of �PT diagrams. Other values include g

⇡NN

= 13.06(8) from partial
wave analysis of nucleon-nucleon scattering data [65]; and g

⇡NN

= 13.14(5) [66], g
⇡NN

= 13.150(5) [67]
from partial wave analysis of pion-nucleon scattering data. That range of values is covered by the error
given in Table 2.

2.5 Numerical results

Employing the radiative corrections given above, the full capture rates become

⇤ = [1 + RC] ⇤
tree

= [1 + 0.0277(10)(2) � 0.005(1)] ⇤
tree

, (19)

where ⇤
tree

is the tree level expression for the chosen spin state. We have displayed a conventional
separation of the radiative corrections in Eq. (19), where the first +2.8% includes the electroweak and
electron vacuum polarization corrections, and the second �0.5% is the finite size correction. Inserting the
relevant quantities from Table 2, the singlet 1S capture rate is given by

⇤
singlet

= 40.226(56) [F
1

(q2

0

) + 0.08833 F
2

(q2

0

) + 2.63645 ḡ
A

� 0.04544 ḡ
P

]2 s�1 , (20)

where the quantities ḡ
P

and ḡ
A

are defined below and the relative uncertainty u
r

= 1.4⇥10�3 in the
prefactor of Eq. (20) quadratically sums the relative uncertainties u

r

(RC) = 1.40⇥10�3 and u
r

(V
ud

) =

12

gpiNN: pion-nucleon scattering, and NN scattering ✔

gA: neutron lifetime ✔

g1,g2,r12: e-p, e-n scattering + H, muH (see below) ✔ ✔
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α expansion:

Sirlin g function (IR subtraction)

written as the sum of three terms,

RC = RC(electroweak) + RC(finite size) + RC(electron VP) , (10)

which we now specify. Neglecting terms of O(E
`

/m
p

, q/m
p

), where E
`

is the charged lepton energy and q
the momentum transfer,5 the radiative corrections to the vector parts of neutron decay and muon capture
are of the same form, but evaluated at di↵erent q2 and with di↵erent lepton mass. The RC (electroweak)
radiative corrections to muon capture [16] were obtained from the original neutron decay calculation, but
including higher-order leading log e↵ects denoted by ellipsis in the following Eq. (11):

RC(electroweak) =
↵

2⇡


4 log

m
Z

m
p

� 0.595 + 2C + g(m
µ

,�
µ

= 0)

�
+ · · · = +0.0237(10) , (11)

where m
Z

= 91.1876 GeV, m
p

= 0.9383 GeV, C = 0.829 [41], and g(m
µ

,�
µ

= 0) = 3 log(m
p

/m
µ

) � 27/4
was obtained from Eq. (20b) in Ref. [47] by replacing m

e

! m
µ

, ignoring bremsstrahlung and taking the
�

µ

= 0 and m
µ

/m
p

= 0 limits. The ellipsis in Eq. (11) denotes higher order (in ↵) corrections enhanced
by large logarithms [42]. These e↵ects have been added to the +2.23% order ↵ correction to obtain the
total +2.37% electroweak radiative correction. The uncertainty has been reduced from 0.4% in Ref. [16] to
0.1%. That reduction is justified by two improvements in the analysis. First, the radiative corrections to
V

ud

(such as C) are correlated with similar corrections in Eq. (11), and their uncertainties largely cancel.
Second, (ignoring nuclear structure), direct calculation of O(↵m

µ

/m
p

) corrections to muon capture (that
were ignored in Ref. [16]) were found to cancel and not contribute to the uncertainty in Eq. (11).

Here, we assume that corrections of O(↵m
µ

/m
p

) due to nuclear structure are parametrized by the
nucleon finite size reduction factor [48]

| 
1S

(0)|2 ! m3

r

↵3

⇡
(1 � 2↵m

r

hri) , (12)

where hri denotes the first moment of the proton charge distribution. Based on a range of model forms
for this distribution, the correction (12) evaluates to

RC(finite size) = �0.005(1) , (13)

where the error spans the central values �0.0044 [31], �0.005 [16], and �0.0055 [35] given in the literature.
We note that the quoted uncertainty may not fully account for possible additional e↵ects of nuclear
structure which could be estimated using a relativistic evaluation of the �-W box diagrams, but are
beyond the scope of this article.6

The corrections RC(electroweak) and RC(finite size) modify the coe�cients c
i

of the e↵ective Hamil-
tonian (4). The remaining radiative correction, from the electron vacuum polarization modification to
the muonic atom Coulomb potential, is described by �V

VP

. This contribution amounts to

RC(electron VP) = +0.0040(2), (14)

where the very small uncertainty 0.02% is estimated by the di↵erence between 1.73↵/⇡ of Ref. [16, 27]
and 1.654↵/⇡ of Ref. [35].

In Eq. (10), we have defined the total radiative correction to include electroweak, finite size and
electron vacuum polarization contributions. In Ref. [16], the finite size correction was treated separately,
and “radiative correction” referred to the sum of our RC(electroweak) and RC(electron VP), amounting
to ⇠ 2.8%.

9

matching, 
running in 4 
Fermi theory

}

hadronic matrix 
element}

computed 
within QM

}
written as the sum of three terms,

RC = RC(electroweak) + RC(finite size) + RC(electron VP) , (10)

which we now specify. Neglecting terms of O(E
`

/m
p

, q/m
p

), where E
`

is the charged lepton energy and q
the momentum transfer,5 the radiative corrections to the vector parts of neutron decay and muon capture
are of the same form, but evaluated at di↵erent q2 and with di↵erent lepton mass. The RC (electroweak)
radiative corrections to muon capture [16] were obtained from the original neutron decay calculation, but
including higher-order leading log e↵ects denoted by ellipsis in the following Eq. (11):

RC(electroweak) =
↵

2⇡


4 log

m
Z

m
p

� 0.595 + 2C + g(m
µ

,�
µ

= 0)

�
+ · · · = +0.0237(10) , (11)

where m
Z

= 91.1876 GeV, m
p

= 0.9383 GeV, C = 0.829 [41], and g(m
µ

,�
µ

= 0) = 3 log(m
p

/m
µ

) � 27/4
was obtained from Eq. (20b) in Ref. [47] by replacing m

e

! m
µ

, ignoring bremsstrahlung and taking the
�

µ

= 0 and m
µ

/m
p

= 0 limits. The ellipsis in Eq. (11) denotes higher order (in ↵) corrections enhanced
by large logarithms [42]. These e↵ects have been added to the +2.23% order ↵ correction to obtain the
total +2.37% electroweak radiative correction. The uncertainty has been reduced from 0.4% in Ref. [16] to
0.1%. That reduction is justified by two improvements in the analysis. First, the radiative corrections to
V

ud

(such as C) are correlated with similar corrections in Eq. (11), and their uncertainties largely cancel.
Second, (ignoring nuclear structure), direct calculation of O(↵m

µ

/m
p

) corrections to muon capture (that
were ignored in Ref. [16]) were found to cancel and not contribute to the uncertainty in Eq. (11).

Here, we assume that corrections of O(↵m
µ

/m
p

) due to nuclear structure are parametrized by the
nucleon finite size reduction factor [48]

| 
1S

(0)|2 ! m3

r

↵3

⇡
(1 � 2↵m

r

hri) , (12)

where hri denotes the first moment of the proton charge distribution. Based on a range of model forms
for this distribution, the correction (12) evaluates to

RC(finite size) = �0.005(1) , (13)

where the error spans the central values �0.0044 [31], �0.005 [16], and �0.0055 [35] given in the literature.
We note that the quoted uncertainty may not fully account for possible additional e↵ects of nuclear
structure which could be estimated using a relativistic evaluation of the �-W box diagrams, but are
beyond the scope of this article.6

The corrections RC(electroweak) and RC(finite size) modify the coe�cients c
i

of the e↵ective Hamil-
tonian (4). The remaining radiative correction, from the electron vacuum polarization modification to
the muonic atom Coulomb potential, is described by �V

VP

. This contribution amounts to

RC(electron VP) = +0.0040(2), (14)

where the very small uncertainty 0.02% is estimated by the di↵erence between 1.73↵/⇡ of Ref. [16, 27]
and 1.654↵/⇡ of Ref. [35].

In Eq. (10), we have defined the total radiative correction to include electroweak, finite size and
electron vacuum polarization contributions. In Ref. [16], the finite size correction was treated separately,
and “radiative correction” referred to the sum of our RC(electroweak) and RC(electron VP), amounting
to ⇠ 2.8%.

9

written as the sum of three terms,

RC = RC(electroweak) + RC(finite size) + RC(electron VP) , (10)

which we now specify. Neglecting terms of O(E
`

/m
p

, q/m
p

), where E
`

is the charged lepton energy and q
the momentum transfer,5 the radiative corrections to the vector parts of neutron decay and muon capture
are of the same form, but evaluated at di↵erent q2 and with di↵erent lepton mass. The RC (electroweak)
radiative corrections to muon capture [16] were obtained from the original neutron decay calculation, but
including higher-order leading log e↵ects denoted by ellipsis in the following Eq. (11):

RC(electroweak) =
↵

2⇡


4 log

m
Z

m
p

� 0.595 + 2C + g(m
µ

,�
µ

= 0)

�
+ · · · = +0.0237(10) , (11)

where m
Z

= 91.1876 GeV, m
p

= 0.9383 GeV, C = 0.829 [41], and g(m
µ

,�
µ

= 0) = 3 log(m
p

/m
µ

) � 27/4
was obtained from Eq. (20b) in Ref. [47] by replacing m

e

! m
µ

, ignoring bremsstrahlung and taking the
�

µ

= 0 and m
µ

/m
p

= 0 limits. The ellipsis in Eq. (11) denotes higher order (in ↵) corrections enhanced
by large logarithms [42]. These e↵ects have been added to the +2.23% order ↵ correction to obtain the
total +2.37% electroweak radiative correction. The uncertainty has been reduced from 0.4% in Ref. [16] to
0.1%. That reduction is justified by two improvements in the analysis. First, the radiative corrections to
V

ud

(such as C) are correlated with similar corrections in Eq. (11), and their uncertainties largely cancel.
Second, (ignoring nuclear structure), direct calculation of O(↵m

µ

/m
p

) corrections to muon capture (that
were ignored in Ref. [16]) were found to cancel and not contribute to the uncertainty in Eq. (11).

Here, we assume that corrections of O(↵m
µ

/m
p

) due to nuclear structure are parametrized by the
nucleon finite size reduction factor [48]

| 
1S

(0)|2 ! m3

r

↵3

⇡
(1 � 2↵m

r

hri) , (12)

where hri denotes the first moment of the proton charge distribution. Based on a range of model forms
for this distribution, the correction (12) evaluates to

RC(finite size) = �0.005(1) , (13)

where the error spans the central values �0.0044 [31], �0.005 [16], and �0.0055 [35] given in the literature.
We note that the quoted uncertainty may not fully account for possible additional e↵ects of nuclear
structure which could be estimated using a relativistic evaluation of the �-W box diagrams, but are
beyond the scope of this article.6

The corrections RC(electroweak) and RC(finite size) modify the coe�cients c
i

of the e↵ective Hamil-
tonian (4). The remaining radiative correction, from the electron vacuum polarization modification to
the muonic atom Coulomb potential, is described by �V

VP

. This contribution amounts to

RC(electron VP) = +0.0040(2), (14)

where the very small uncertainty 0.02% is estimated by the di↵erence between 1.73↵/⇡ of Ref. [16, 27]
and 1.654↵/⇡ of Ref. [35].

In Eq. (10), we have defined the total radiative correction to include electroweak, finite size and
electron vacuum polarization contributions. In Ref. [16], the finite size correction was treated separately,
and “radiative correction” referred to the sum of our RC(electroweak) and RC(electron VP), amounting
to ⇠ 2.8%.

9

written as the sum of three terms,

RC = RC(electroweak) + RC(finite size) + RC(electron VP) , (10)

which we now specify. Neglecting terms of O(E
`

/m
p

, q/m
p

), where E
`

is the charged lepton energy and q
the momentum transfer,5 the radiative corrections to the vector parts of neutron decay and muon capture
are of the same form, but evaluated at di↵erent q2 and with di↵erent lepton mass. The RC (electroweak)
radiative corrections to muon capture [16] were obtained from the original neutron decay calculation, but
including higher-order leading log e↵ects denoted by ellipsis in the following Eq. (11):

RC(electroweak) =
↵

2⇡


4 log

m
Z

m
p

� 0.595 + 2C + g(m
µ

,�
µ

= 0)

�
+ · · · = +0.0237(10) , (11)

where m
Z

= 91.1876 GeV, m
p

= 0.9383 GeV, C = 0.829 [41], and g(m
µ

,�
µ

= 0) = 3 log(m
p

/m
µ

) � 27/4
was obtained from Eq. (20b) in Ref. [47] by replacing m

e

! m
µ

, ignoring bremsstrahlung and taking the
�

µ

= 0 and m
µ

/m
p

= 0 limits. The ellipsis in Eq. (11) denotes higher order (in ↵) corrections enhanced
by large logarithms [42]. These e↵ects have been added to the +2.23% order ↵ correction to obtain the
total +2.37% electroweak radiative correction. The uncertainty has been reduced from 0.4% in Ref. [16] to
0.1%. That reduction is justified by two improvements in the analysis. First, the radiative corrections to
V

ud

(such as C) are correlated with similar corrections in Eq. (11), and their uncertainties largely cancel.
Second, (ignoring nuclear structure), direct calculation of O(↵m

µ

/m
p

) corrections to muon capture (that
were ignored in Ref. [16]) were found to cancel and not contribute to the uncertainty in Eq. (11).

Here, we assume that corrections of O(↵m
µ

/m
p

) due to nuclear structure are parametrized by the
nucleon finite size reduction factor [48]

| 
1S

(0)|2 ! m3

r

↵3

⇡
(1 � 2↵m

r

hri) , (12)

where hri denotes the first moment of the proton charge distribution. Based on a range of model forms
for this distribution, the correction (12) evaluates to

RC(finite size) = �0.005(1) , (13)

where the error spans the central values �0.0044 [31], �0.005 [16], and �0.0055 [35] given in the literature.
We note that the quoted uncertainty may not fully account for possible additional e↵ects of nuclear
structure which could be estimated using a relativistic evaluation of the �-W box diagrams, but are
beyond the scope of this article.6

The corrections RC(electroweak) and RC(finite size) modify the coe�cients c
i

of the e↵ective Hamil-
tonian (4). The remaining radiative correction, from the electron vacuum polarization modification to
the muonic atom Coulomb potential, is described by �V

VP

. This contribution amounts to

RC(electron VP) = +0.0040(2), (14)

where the very small uncertainty 0.02% is estimated by the di↵erence between 1.73↵/⇡ of Ref. [16, 27]
and 1.654↵/⇡ of Ref. [35].

In Eq. (10), we have defined the total radiative correction to include electroweak, finite size and
electron vacuum polarization contributions. In Ref. [16], the finite size correction was treated separately,
and “radiative correction” referred to the sum of our RC(electroweak) and RC(electron VP), amounting
to ⇠ 2.8%.

9

}}
finite terms (estimate with OPE)

large log}

(should be done better: computed 
in large nucleus ansatz rE>>rA)

✔

✔
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isospin violation:

2.2 Tree level calculation

Hadronic physics in the nucleon matrix elements of the vector and axial-vector quark currents of Eq. (3)
is parameterized as:3

hn|(V µ � Aµ)|pi = ū
n


F

1

(q2)�µ+
iF

2

(q2)

2m
N

�µ⌫q
⌫

� F
A

(q2)�µ�5 � F
P

(q2)

m
N

qµ�5

+
F

S

(q2)

m
N

qµ � iF
T

(q2)

2m
N

�µ⌫q
⌫

�5

�
u

p

+ . . . , (6)

where V µ � Aµ = d̄�µu � d̄�µ�
5

u, and the ellipsis again denotes e↵ects of radiative corrections. For
definiteness we employ the average nucleon mass m

N

⌘ (m
n

+ m
p

)/2. The form factors F
S

and F
T

are
so-called second class amplitudes that violate G parity and are suppressed by isospin violating quark
masses or electromagnetic couplings [30–33]. They would appear in the capture rate, Eq. (7) below,
accompanied by an additional factor m

µ

/m
N

relative to F
1

and F
A

. Similar to isospin violating e↵ects in
F

2

(0), discussed below in Sec. 2.4, power counting predicts negligible impact of F
S

and F
T

at the permille
level; we thus ignore them in the following discussion.

The c
i

in Eq. (5) are determined by matching the quark level theory (3) to the nucleon level theory (4),
using the hadronic matrix elements (6). This matching is accomplished by enforcing, e.g., equality of the
annihilation rate for µp ! ⌫

µ

n computed in both theories for the limit of free particles, with the proton
and muon at rest. For the coe�cients corresponding to singlet and triplet decay rates, this yields [16, 34]

c
0

=
E2

⌫

2⇡M2

(M � m
n

)2

2M � m

n

M � m
n

F
1

(q2

0

) +
2M + m

n

M � m
n

F
A

(q2

0

) � m
µ

2m
N

F
P

(q2

0

)

+ (2M + 2m
n

� 3m
µ

)
F

2

(q2

0

)

4m
N

�
2

,

c
0

+ 2c
1

=
E2

⌫

24⇡M2

(M � m
n

)2
⇢

m
µ

m
N

F
P

(q2

0

) � 2m
n

M � m
n

�
F

1

(q2

0

) � F
A

(q2

0

)
�

+ (2M + 2m
n

� m
µ

)
F

2

(q2

0

)

2m
N

�
2

+ 2


m

µ

m
N

F
P

(q2

0

) +
2M

M � m
n

�
F

1

(q2

0

) � F
A

(q2

0

)
�� m

µ

F
2

(q2

0

)

2m
N

�
2

�
, (7)

where the initial state mass is M ⌘ m
µ

+m
p

, the neutrino energy is E
⌫

⌘ (M2�m2

n

)/2M = 99.1482 MeV,
and the invariant momentum transfer is

q2

0

⌘ m2

µ

� 2m
µ

E
⌫

= �0.8768 m2

µ

. (8)

Since the matching is performed with free particle states, the quantities M , E
⌫

and q2

0

are defined inde-
pendent of the atomic binding energy, as necessary for determination of the state-independent coe�cients
c
i

of the e↵ective Hamiltonian (4).4

The amplitudes (7) can also be expressed as an expansion in �PT [12, 35–37]. However, the general
formulas in Eq. (7) allow us to more directly implement and interpret experimental constraints on the
form factors and do not carry the intrinsic truncation error of NNLO �PT derivations (estimated in
Ref. [37] as ±1%). For example, we may take the vector form factors F

1

, F
2

directly from experimental
data, rather than attempting to compute them as part of an expansion in �PT. No approximation is
yet made in Eq. (7), except for neglect of second class currents, as justified above. We investigate below
the restricted application of �PT to express F

P

(q2

0

) in terms of r2

A

and other experimentally measured
quantities.

3We choose a convention for the pseudoscalar form factor that is independent of lepton mass: FP (q2) = (mN/mµ)gP (q2),
in terms of gP (q2) used in Ref. [29]. Our sign conventions for FA and FP are such that FA(0) and all other form factors are
positive.

4In particular, a binding energy is not included in the initial-state mass M , but would anyways correspond to a relative
order ↵2 correction that is beyond the current level of precision.

7

vector form factors: CC from isovector NC

2nd class currents:

deviations in F1(0): second order in IV (definition of CVC)

deviations in F1(q2): first order in IV plus first order in q2 

deviations in F2(0): first order in IV plus 0.5 order in 
kinematic prefactor (numerical estimate: 3.2e-4 << %)

✔

✔

✔

contribution of FS,FT: first order in IV plus 0.5 order in 
kinematic prefactor

✔
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results:

iv) ppµ molecular e↵ects: Although capture from ppµ molecules amounts only to 3% in 1 MPa hydrogen
gas, the uncertainty introduced by the inconsistent determinations of the ortho-para rate �

op

[7] shown
in Fig. 3, introduces a �⇤

singlet

⇠ 1.8 s�1 uncertainty [15]. As shown in Fig. 2 of Ref. [14], the poor
knowledge of �

op

also leaves unresolved the question whether the previous measurement of ordinary muon
capture in liquid hydrogen [75] or, alternatively, the measurement of radiative muon capture [8] strikingly
deviates from theory. The high density cryogenic TPC developed for the MuSun µD experiment, could
settle both issues with a first precise measurement of �

op

when filled with protium gas of about 10% liquid
density.

Finally, it should be mentioned that the MuCap TPC occasionally su↵ered sparking issues, which
required running with reduced voltage. Better stability and higher gain should be achieved by starting
some R&D e↵orts with smaller prototypes, with improvements to the classical proportional wire chamber
technique used by MuCap as well as tests of — now mature — micro-pattern chamber alternatives, like
GEMS and micro-megas.

4 Results and opportunities

Having reviewed the status of theory and explored the reach for experiment, in this section we evaluate
how well the nucleon form factors and coupling constants can be determined by the present MuCap
experiment at 1% precision, and by a potential new experiment at the 0.33% level.

4.1 Updated value for the pseudoscalar coupling ḡ
P

and extraction of g
⇡NN

We begin our applications by using the final MuCap experimental result, ⇤MuCap

singlet

= 715.6(7.4) s�1,

together with our updated ⇤theory

singlet

in Eq. (24), to extract a value for ḡ
P

that can be compared with the

prediction of �PT. Both the experimental value and theoretical prediction depend on r2

A

. To illustrate
that dependence, we start with the traditional value of r2

A

(dipole, ⌫) = 0.453(23) fm2 obtained from
dipole fits to neutrino scattering data with a very small (⇠ 5%) uncertainty. It leads to:

ḡ
P

MuCap

��
r

2

A=0.453(23) fm

2

= 8.22 (48)
exp

(9)ḡ
A

(6)
RC

= 8.22(49) , ḡ
P

theory = 8.256(72) . (31)

For comparison, we take the ratio and find ḡ
P

theory/ḡ
P

MuCap = 1.00(6), which exhibits very good agree-
ment at the ±6% level. Alternatively, employing the more conservative z expansion value obtained from
neutrino scattering, r2

A

(z exp., ⌫) = 0.46(22) fm2, with its nearly 50% uncertainty, one finds:

ḡ
P

MuCap

��
r

2

A=0.46(22) fm

2

= 8.19 (48)
exp

(69)ḡ
A

(6)
RC

= 8.19(84) , ḡ
P

theory = 8.25(25) . (32)

The uncertainties are considerably larger. However, taking the ratio and accounting for correlated errors,
ḡ
P

theory/ḡ
P

MuCap = 1.01(8). Agreement is still very good and theory is tested at about ±8%, not a
significant loss of sensitivity. If r2

A

could be independently determined with high precision (for example,
using lattice gauge theory techniques), then a new MuCap experiment with a factor of 3 improvement
would test �PT at about the 2% level.

Alternatively, the measured capture rate in conjunction with the theoretical formalism can be used
to determine the pion-nucleon coupling g

⇡NN

from the µH atom. This approach is closely related to the
extraction of the pseudoscalar form factor, as g

⇡NN

appears as the least well known parameter in the
PCAC pole term of Eq. (18). For this purpose Eq. (24) was recast in terms of the independent parameters
(g

⇡NN

, g
A

and r2

A

) into Eq. (25), avoiding the correlation between the axial form factors introduced by
r2

A

. That prescription gives, for r2

A

= 0.46(22) fm2:

gMuCap

⇡NN

= 13.04 (72)
exp

(8)g
A

(67)r2

A

(10)
RC

= 13.04(99) , gexternal

⇡NN

= 13.12(10) . (33)
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P

theory = 8.256(72) . (31)

For comparison, we take the ratio and find ḡ
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ḡ
P

theory/ḡ
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The result is in very good agreement with the external g
⇡NN

obtained from pion-nucleon phase shift and
scattering cross section data, such as the value given in Table 2. It provides a direct 8% test of �PT
essentially the same as indirectly obtained from the ḡ

P

analysis given above. As in the case of ḡ
P

, a future
factor of 3 improvement in the capture rate combined with an independent precise determination of r2

A

would determine g
⇡NN

to 2%.

4.2 Determination of r2

A

from muon capture

The basic premise of this paper has been that the error on r2

A

extracted from neutrino scattering
data is much larger (by about an order of magnitude) than generally assumed. Indeed, the value [19]
r2

A

(z exp. ⌫) = 0.46(22) fm2, based on the z expansion method, that we employed, has a nearly 50%
uncertainty. As we shall see in Sec. 5, this is problematic for predicting quasi-elastic neutrino scatter-
ing cross sections needed for next-generation neutrino oscillation studies. For that reason, it is timely
and useful to consider alternative ways of determining r2

A

. Various possibilities are discussed in Sec. 5;
however, first we consider existing and possible future implications from the MuCap experiment.

Muon capture provides a unique opportunity to determine r2

A

, highly complementary to neutrino
charged-current scattering. The momentum transfer q2

0

is small and well defined, rendering higher terms in
the q2

0

Taylor expansion negligible. However, the e↵ect of r2

A

is small, with F
A

(q2

0

) being only r2

A

q2

0

/6 ⇡ 2%
smaller than F

A

(0). Thus precision experiments at the sub-percent level are called for.
The change in ⇤

singlet

due to a change in r2

A

is given in Eqs. (24),(25), and can be quantified as

@⇤
singlet

@r2

A

=
@⇤

singlet

@ḡ
A

@ḡ
A

@r2

A

+
@⇤

singlet

@ḡ
P

@ḡ
P

@r2

A

= �47.8 + 16.7 = �31.1 s�1 fm�2 . (34)

Thus, a one sigma step of 0.22 fm2 in r2

A

changes ⇤
singlet

by 6.8 s�1 or about 1%. Unfortunately, for
the present purpose, the sensitivity to the axial radius is reduced, as the contributions from ḡ

A

and ḡ
P

counteract.
Employing Eq.(25) with the input from Table 2 we find

r2

A

(MuCap) = 0.43 (24)
exp

(3)g
A

(3)g
⇡NN

(3)
RC

= 0.43(24) fm2. (35)

This result is comparable in uncertainty to the z expansion fit to the pioneering neutrino scattering
experiments [19]. Making the reasonable assumption that the two approaches are uncorrelated, we can
compute the weighted average

r2

A

(ave.) = 0.45(16) fm2. (36)

The averaged uncertainty has been reduced to about 35%. A future experiment, assumed to reduce the
overall MuCap error from 1% to 0.33% would reduce the error in r2

A

to

�r2

A

(future exp.) = (0.08)
exp

(0.03)g
A

(0.03)g
⇡NN

(0.03)
RC

= 0.10 fm2. (37)

The muon capture squared axial radius determination, when averaged with the neutrino scattering z
expansion result, would then have about a 20% uncertainty. This precision level is important, as it would
be su�cient to reduce the r2

A

dependent theoretical uncertainty in neutrino quasielastic cross sections to
a subdominant contribution, as we demonstrate below in Sec. 5.1.

4.3 Determination of g
A

and electron-muon universality

The axial coupling governing neutron � decay, g
A

= F
A

(0), is a critically important QCD induced physics
parameter [83]. Taken together with the neutron lifetime, ⌧

n

, it can provide a clean determination of V
ud

free of nuclear physics uncertainties, via Eq. (9). In addition, g
A

is needed for constraining the number of
e↵ective neutrino species from primordial nucleosynthesis; computing reactor and solar neutrino fluxes and
cross-sections; parametrizing the proton spin content and testing the Goldberger-Treiman relation [84].
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of the isovector axial form factor, and the strange vector form factors, taking the remaining form factors854

from other sources. An amplitude was measured for F
A

(q2) at Q2 = �q2 = 0.22 and 0.63 GeV2, but with855

insu�cient precision to extract shape information. The process e+d ! ⌫̄
e

pp is another possibility to access856

the charged current nucleon interaction, e+n ! ⌫̄
e

p using electron (positron) beams. No measurements857

of this process currently exist.858

5.2.4 Summary of complementary constraints859
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Figure 7: (color online) Axial radius determined by di↵erent processes. Data points are as in Table 1.
The hashed red region represents the average obtained in this work, obtained from the z expansion ⌫d and
MuCap results [cf. Eq. (36)]. The hatched blue band represents the average of the dipole ⌫d and dipole
eN ! eN 0⇡ results from Ref. [17]. Values labeled “dipole” enforce the dipole shape ansatz. The value
labeled “z exp.” uses the model independent z expansion. The green point represents the MiniBooNE
dipole fit [20] to ⌫-C scattering data, and does not account for nuclear model uncertainty.

A range of processes and techniques have potential to help constrain the nucleon axial radius. Some860

of these, such as pion electroproduction and parity violating electron-proton scattering, access the form861

factor and radius indirectly and su↵er significant model-dependent corrections that need to be further862

addressed to achieve ⇠ 10% accuracy on r2

A

. Lattice QCD and elementary target neutrino scattering are863

potentially pristine theoretical or experimental approaches. However, lattice QCD has not yet achieved864

the requisite accuracy, and hydrogen or deuterium active target neutrino experiments are fraught with865

surmountable but di�cult technical and safety issues. Figure 7 displays the range of values for r2

A

as866

tabulated in Table 1, including the MuCap determination presented in this paper. Our average, Eq. (36),867

is obtained from the z expansion ⌫d and MuCap results, which have complete error budgets. The future868

is sure to witness an interesting complementarity between di↵erent approaches to axial nucleon structure,869

with a wide range of constraints and applications.870

26

1 Introduction54

Muonic hydrogen, the electromagnetic bound state of a muon and proton, is a theoretically pristine atomic55

system. As far as we know, it is governed by the same interactions as ordinary hydrogen, but with the56

electron of mass 0.511 MeV replaced by the heavier muon of mass 106 MeV, an example of electron-muon57

universality. That mass enhancement (⇠207) manifests itself in much larger atomic energy spacings and a58

smaller Bohr radius of 2.56⇥10�3Å. This places the muonic hydrogen size about halfway (logarithmically)59

between the atomic angstrom and the nuclear fermi (1 fm = 10�5Å) scale.60

Those di↵erences make muonic hydrogen very sensitive to otherwise tiny e↵ects such as those due to61

proton size and nucleon structure parameters governing weak interaction phenomenology. Indeed, muonic62

hydrogen Lamb shift spectroscopy [1, 2] has provided a spectacularly improved measurement of the proton63

charge radius that di↵ers by about 7 standard deviations from the previously accepted value inferred from64

ordinary hydrogen and electron-proton scattering [3]. (That so called Proton Radius Puzzle is currently65

unresolved [4–6]). Similarly, the larger muon mass kinematically allows the weak muon capture process66

depicted in Fig. 1,67

µ� + p ! ⌫
µ

+ n , (1)

to proceed, while ordinary hydrogen is (fortunately for our existence) stable.68

W+

p

µ�

n

⌫µ

Figure 1: Muon capture on the proton, µ�p ! ⌫
µ

n, via charged W boson exchange.

Weak muon capture in nuclei has provided a historically important probe of weak interactions and a69

window for studying nuclear structure. In particular, weak capture in muonic hydrogen is a sensitive probe70

of the induced pseudoscalar component of the axial current p ! n matrix element which is well predicted71

from the chiral properties of QCD. However, early experimental determinations of that pseudoscalar72

coupling, ḡ
P

,1 had, for some time, appeared problematic [7]. All ḡ
P

extractions from ordinary muon73

capture in hydrogen su↵ered from limited precision, while the more sensitive extraction from radiative74

muon capture [8] disagreed with ordinary muon capture and the solid prediction of Chiral Perturbation75

Theory (�PT) [9–13]. An important underlying contribution to this problem was the chemical activity of76

muonic hydrogen, which like its electronic sibling, can form molecular ions, (ppµ)+. The highly spin de-77

pendent weak interaction leads to very di↵erent capture rates from various muonic atomic and molecular78

states. Thus, atomic physics processes like ortho-para transitions in the muonic molecule, which flip the79

proton spins, significantly change the observed weak capture rates and often clouded the interpretation80

of experimental results in the 55-year history of this field. Unfortunately, the uncertainty induced by81

molecular transitions was particularly severe for the most precise measurements which were performed82

with high density liquid hydrogen targets, where, because of rapid ppµ formation, essentially capture from83

the molecule, not the pµ atom, is observed. This problem was resolved by the MuCap Collaboration at84

1The quantity ḡP is defined at the characteristic momentum q2

0

for muon capture, see Eqs. (8),(23) below.

3

• potential factor ~3 improvement from next generation muon capture 
experiment

muon capture constraints

lattice average: see also Yao, Alvarez-Ruso, 
Vicente-Vacas 1708.08776 [ rA2=0.26(4) ]

RJH, Kammel, Marciano, Sirlin 1708.08462

complete
error 

budgets
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Figure 6: (color online) Quasielastic neutrino-neutron cross section. Reference fit of Ref. [19] in green
band shows the current uncertainty. The yellow band shows the uncertainties independent of r2

A

. The
hatched black band shows the uncertainty contribution from r2

A

, if r2

A

would be known to 20% (using the
central value from the reference fit). In that case, the r2

A

contribution would be subdominant in the total
error (quadratic sum of yellow and black hatched), as illustrated at E

⌫

= 1GeV in Eq. (40).

External constraints on r2

A

, used in conjunction with the existing deuteron target neutrino scattering748

data, can thus lead to a halving of the uncertainty on the elementary signal cross section for long baseline749

neutrino experiments. Advances in our quantitative understanding of neutrino scattering, through im-750

provements in r2

A

, heavy nuclear target modeling and direct precise neutrino cross-section measurements751

will allow us to fully exploit the planned sensitivity of future oscillation experiments.752

5.2 Other constraints and applications753

Given the importance of r2

A

, and more generally F
A

(q2), let us understand what complementary infor-754

mation exists from other approaches. This information comes from theoretical approaches to determine755

F
A

(q2) from the QCD Lagrangian; and from experimental measurements using weak and electromagnetic756

probes of the nucleon.757

5.2.1 Lattice QCD758

Lattice QCD is a computational method for determining low energy properties of hadrons based on first759

principles starting from the QCD Lagrangian.20 This method has reached a mature state for meson760

properties.21 Nucleons present an additional challenge for lattice simulations, owing to a well-known761

noise problem [104]. A variety of approaches are being taken to explore and address the simultaneous762

20For a brief introduction and references see the lattice QCD review of S. Hashimoto, J. Laiho and S. R. Sharpe in Ref. [53].
21For a review and further references, see Ref. [103].

23

existing error (no external 
radius constraint)

with radius constraint: ( hatched: 
external radius error δrA2=20% ) 

implications for quasielastic neutrino cross sections
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Figure 5: (color online) Relation between g
A

and r2

A

from electron and muon processes. The black band
shows g

A

from neutron � decay (Table 2). The green band denotes the g
A

� r2

A

region consistent with
the present MuCap result within 1-sigma, the yellow band the potential of a future 3-times improved
measurement (the same central value has been assumed). The current value and uncertainty in r2

A

from
the neutrino scattering analysis is shown by vertical lines. If r2

A

would be known to 1%, the future
experiment would determine g

A

within the red region.

e↵ective neutrino species from primordial nucleosynthesis; computing reactor and solar neutrino fluxes and638

cross-sections; parametrizing the proton spin content and testing the Goldberger-Treiman relation [95].639

In this paper we use the value g
A

= 1.2749(9), based on the PDG value for ⌧
n

and V
ud

given in Table 2.640

We should note, however, that a recent trapped neutron lifetime experiment at Los Alamos [96] with very641

small systematic uncertainties finds ⌧
n

= 877.7(7) s, in strong support of earlier trapped neutron results.642

Roughly estimating the e↵ect of the new result on the neutron lifetime average suggests a preliminary643

average ⌧ave.

n

= 879.3(9) s. This shorter average lifetime leads to a larger g
A

= 1.2757(7) which is very644

consistent with the most recent direct neutron decay asymmetry measurements of g
A

[53]. Of course, a645

larger g
A

used as input will lead to a larger ḡMuCap

P

= 8.24(84), but one still fully consistent with theory,646

ḡ
P

theory = 8.25(25). The error on g
A

is expected to be further reduced to about ±0.01%, by future ⌧
n

647

and direct neutron decay asymmetries. It will be interesting to see if the two methods agree at that level648

of precision.649

For now, the value of r2

A

obtained from the z expansion fit to neutrino-nucleon quasi-elastic scattering650

together with the MuCap singlet muonic Hydrogen capture rate ⇤MuCap

singlet

can be used in Eq. (25) to obtain651

a muon based value, g
A

= 1.276(8)
r

2

A
(8)

MuCap

= 1.276(11). That overall roughly ±1% sensitivity is to652

be compared with the current, better than ±0.1%, determination of g
A

from the electron based neutron653

lifetime that we have been using in our text, or the preliminary update including Ref. [96] given above.654

The good agreement can be viewed as a test of electron-muon universality in semileptonic charged current655

interactions at roughly the 1% level. We have described how a factor of 3 improvement in the MuCap656

20

test of electron-muon universality

electron coupling (neutron lifetime)

current uncertainty

muon coupling (current uncertainty)
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• eikonal coupling 

• factorization of soft region
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FIG. 1: Scattering of proton from electromagnetic source.

At the same time, we introduce formalism and notation that will carry over to the more

complicated case of relativistic electron scattering (i.e., Q2 � m2) considered later.

A. E↵ective theory

For the process depicted in Fig. 1, introduce timelike unit vectors vµ and v0µ via

pµ = Mvµ , p0µ = Mv0µ . (1)

At factorization scale µ ⇠ M , hard momentum modes are integrated out, leaving a low

energy e↵ective theory consisting of heavy particle source fields interacting with soft photons.

The QED current is matched to an expansion in e↵ective operators,

Jµ =  ̄�µ !
X

i

ci(µ, v · v0)h̄v0�
µ
i hv , (2)

where hv, hv0 denote heavy fermion fields satisfying v/ hv = hv.2 The heavy fermion fields

interact with soft photons, as described by the e↵ective theory Lagrangian

Le↵. = �1

4
(F µ⌫)2 + h̄v(iv · @ + Zev · A)hv + h̄v0(iv

0 · @ + Zev0 · A)hv0 +O(1/M) , (3)

where Z = +1 for the proton, Aµ is the electromagnetic field and Fµ⌫ = @µA⌫ � @⌫Aµ.

B. One loop matching

An explicit basis of operator structures in Eq. (2) respecting the discrete symmetries of

the electromagnetic current is

�µ
1 = �µ, �µ

2 = vµ + v0µ . (4)

2 For reviews of heavy particle e↵ective theories in the context of QCD and heavy quarks, see Refs. [11, 12].

NRQED was introduced in Ref. [13]. For a discussion of general heavy particle e↵ective theories see

Ref. [14].
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⇒ exponentiation of IR divergences, cancellation between real and virtual
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Yennie, Frautschi, Suura (1961)

But exponentiation of IR divergences does not imply exponentiation of 
the entire first order correction
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then
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where results for F1(q2, 0, 0) through two-loop order are
given in Refs. [12, 13],
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Renormalizing in the MS scheme, we have (at nf = 1)

p
H(µ) = ZH

p
Hbare , (34)

with the renormalization constant,
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The explicit renormalized hard function is

p
H(µ) = 1 +

↵̄(µ)
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1st order in α

2nd order in α

- quoted systematics in A1 electron-proton 
scattering data are 0.2-0.5 % 

- need to systematically account for 
subleading logarithms, recoil, nuclear charge 
and structure

- leading order radiative corrections ~30%
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t
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= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t
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= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:

(1 + �) !

1 ±

✓
� +

↵

⇡

log2

Q

2

m

2

e

◆�±1

⇥ exp

✓
�↵

⇡

log2

Q

2

m

2

e

◆
. (41)

These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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FIG. 5: E↵ective theory diagrams for soft and collinear re-
gions of photon loop momentum in the first diagram of Fig. 3.
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then

p
Hbare = F1(q

2, m2 = 0, �2 = 0)

= 1 +
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where results for F1(q2, 0, 0) through two-loop order are
given in Refs. [12, 13],
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Renormalizing in the MS scheme, we have (at nf = 1)

p
H(µ) = ZH

p
Hbare , (34)

with the renormalization constant,
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The explicit renormalized hard function is
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1st order in α

2nd order in α

- quoted systematics in A1 electron-proton 
scattering data are 0.2-0.5 % 

- need to systematically account for 
subleading logarithms, recoil, nuclear charge 
and structure

- leading order radiative corrections ~30%
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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the z expansion with t
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/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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yses of Mainz and world data. To determine an opti-
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then
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where results for F1(q2, 0, 0) through two-loop order are
given in Refs. [12, 13],
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Renormalizing in the MS scheme, we have (at nf = 1)
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The explicit renormalized hard function is
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1st order in α

2nd order in α

- quoted systematics in A1 electron-proton 
scattering data are 0.2-0.5 % 

- need to systematically account for 
subleading logarithms, recoil, nuclear charge 
and structure

- leading order radiative corrections ~30%
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FIG. 1: Scattering of proton from electromagnetic source.

At the same time, we introduce formalism and notation that will carry over to the more

complicated case of relativistic electron scattering (i.e., Q
2
� m

2
) considered later.

A. E↵ective theory

For the process depicted in Fig. 1, introduce timelike unit vectors v
µ
and v0µ via

p
µ
= Mv

µ
, p0µ = Mv0µ . (1)

At factorization scale µ ⇠ M , hard momentum modes are integrated out, leaving a low

energy e↵ective theory consisting of heavy particle source fields interacting with soft photons.

The QED current is matched to an expansion in e↵ective operators,

J
µ
=  ̄�

µ
 !

X

i

ci(µ, v · v0)h̄v0�
µ
i hv , (2)

where hv, hv0 denote heavy fermion fields satisfying v/ hv = hv.
2

The heavy fermion fields

interact with soft photons, as described by the e↵ective theory Lagrangian

Le↵. = �
1

4
(F

µ⌫
)
2
+ h̄v(iv · @ + Zev · A)hv + h̄v0(iv0 · @ + Zev0 · A)hv0 +O(1/M) , (3)

where Z = +1 for the proton, A
µ
is the electromagnetic field and Fµ⌫ = @µA⌫ � @⌫Aµ.

B. One loop matching

An explicit basis of operator structures in Eq. (2) respecting the discrete symmetries of

the electromagnetic current is

�
µ
1 = �

µ
, �

µ
2 = v

µ
+ v0µ . (4)

2 For reviews of heavy particle e↵ective theories in the context of QCD and heavy quarks, see Refs. [11, 12].

NRQED was introduced in Ref. [13]. For a discussion of general heavy particle e↵ective theories see

Ref. [14].
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FIG. 2: First order radiative corrections to electron scattering from static source.

III. RELATIVISTIC PARTICLE

When particle velocities satisfy v · v0 � 1, new large logarithms appear in perturbation

theory which are not resummed by the renormalization analysis in the heavy particle e↵ective

theory of the previous section. For example, ci(µ, v · v0) in Eq. (5) contains large logarithms,

log(v·v0), regardless of the choice for factorization scale µ. In order to isolate and resum these

additional large logarithms, we must extend the e↵ective theory to include collinear degrees

of freedom [18–25]. Before turning to the e↵ective theory description, let us examine the

explicit two-loop calculation for relativistic electron-proton scattering in the static source

limit. We will then perform the e↵ective theory analysis in this limit before including

arbitrary recoil corrections, and radiative corrections involving the proton.

A. Two loop corrections in static limit

To isolate the essential points, let us consider the problem of relativistic unpolarized

electron-proton scattering in the static-source limit of large proton mass: m ⌧ E ⌧ M ,

where m and M denote the electron and proton masses and E is the electron energy. Ne-

glecting power corrections in m/E, and working to first order in nuclear charge (i.e., single

photon exchange), the cross section may be written

d� =
(d�)Mott

[1� ⇧̂(q2)]2
(1 + �e + �e� + �e�� + . . . ) , (26)

where (d�/d⌦)Mott = ↵
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2
(✓/2)/[4E

2
sin

4
(✓/2)] is the tree-level, Mott, cross section, and

⇧̂(q
2
) is the photon vacuum polarization function. Each term �X in Eq. (26) corresponds to

di↵erent numbers of final state photons and is expanded according to �X =
P1

n=0

� ↵
4⇡

�n
�
(n)
X .

Consider radiative corrections at first order in ↵, cf. Fig. 2. Regulating infrared diver-

gences with an infinitesimal photon mass �, corrections with just an electron in the final

state are
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2
,m

2
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2
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FIG. 4: Radiative correction � in static source limit for E = 1GeV, �E = 5MeV, computed at

first (bottom, blue, curve) and second (top, red, curve) in ↵.

Fig. 4 displays the total correction � at first and second order in perturbation theory,

for illustrative values E = 1GeV, �E = 5MeV. Logarithmically enhanced corrections

beginning at order ↵2L3 are not captured by a simple exponentiation ansatz, � ! exp[ ↵
4⇡
�(1)].

In the next section we derive the e↵ective theory that allows identification and resummation

of large logarithms.

B. E↵ective theory: matching

To determine the origin of the di↵erent contributions in Eq. (32), and to systematically

resum large logarithms in perturbation theory, let us construct an e↵ective theory to separate

the physics at di↵erent energy scales. We focus on the formal counting m2 ⇠ (�E)2 and

Q2 � m2 (i.e., v · v0 � 1). Appendix E outlines an e↵ective operator analysis analogous to

Eqs. (2) and (3). In place of Eq. (13), the new factorization formula, valid up to O(m2/Q2)

corrections and verified explicitly through two-loop order (cf. Appendices D and E), reads
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. (33)

The explicit matching with QED is most easily performed using dimensional regulariza-
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FIG. 8: Expansion in momentum regions of amplitudes for electron scattering in the static source

limit. Diagram on the left hand side is in the full theory (QED), diagrams on the right hand side

are in the e↵ective theory. Soft and collinear photons are represented by curly lines, and curly lines

superimposed on solid lines, respectively.

averaging and summing over initial and final electron spins, the squared matrix element,

divided by the tree level squared matrix element without radiation, can be expanded in

terms of the following basic integrals (and the integrals related by p $ p0, k $ �k),
Z
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D1(�)D2D3D4

,

Z
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Z
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Z
1
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[1, Lµ] , (D9)

where integration is over
R
=

R
ddL, and the denominators are

D1(�) = L2 � �2 , D1 = L2 , D2 = L2 + 2L · p , D3 = L2 + 2L · p0 ,
D4 = L2 + 2L · (p0 + k) + 2p0 · k . (D10)

We evaluated these integrals using dimensional regularization for ultraviolet divergences and

photon mass � for infrared divergences. After mass, coupling and wavefunction renormal-

ization, and expressing the result in terms of the onshell coupling, we obtain expressions of

the form (D3), which may be expanded according to Eqs. (D5), (D7) and (D8). Neglect-

ing contributions that are power suppressed after photon phase space integration, the final

result reads
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Appendix E: Two loop mixed real-virtual correction: e↵ective theory

Here we outline the evaluation of the mixed real-virtual corrections using a decomposition

into soft and collinear momentum regions, formalized as soft-collinear e↵ective theory [18–
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averaging and summing over initial and final electron spins, the squared matrix element,

divided by the tree level squared matrix element without radiation, can be expanded in

terms of the following basic integrals (and the integrals related by p $ p0, k $ �k),
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where integration is over
R
=

R
ddL, and the denominators are

D1(�) = L2 � �2 , D1 = L2 , D2 = L2 + 2L · p , D3 = L2 + 2L · p0 ,
D4 = L2 + 2L · (p0 + k) + 2p0 · k . (D10)

We evaluated these integrals using dimensional regularization for ultraviolet divergences and

photon mass � for infrared divergences. After mass, coupling and wavefunction renormal-

ization, and expressing the result in terms of the onshell coupling, we obtain expressions of

the form (D3), which may be expanded according to Eqs. (D5), (D7) and (D8). Neglect-

ing contributions that are power suppressed after photon phase space integration, the final

result reads
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• factorization

hadron structure 
(Born form factors, …)

hard collinear soft

[ remainder function starting 
at 2-loop (collinear anomaly/rapidity logs) ]

- physical electron mass regulates collinear divergences
- R given by ratio of Wilson loop matrix elements in m≠0/m=0 

Becher, Melnikov (2007)

Chiu, Golf, Kelley, Manohar (2007) 

Becher, Neubert (2010)

Chiu, Jain, Neill, Rothstein (2012)

…
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Sudakov form factor at one loop: 

(two-loop matching, real+virtual see 1605.02613)
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Two photon exchange

• Nuclear charge corrections introduce new spin structures 
(helicity counting: 3 amplitudes at leading power in me/Q)

FH(µ)�µ ⌦ �µ !
3X

i=1

ci(µ)�
(e)
i ⌦ �(p)

i

• In principle, can use e+ and e- data to separately determine 
1-photon exchange and 2-photon exchange contributions to ci 

• However, with available data, measure combination of 1-
photon and 2-photon contributions.   

• Regardless of treatment of hard coefficients, remaining 
radiative corrections are universal 
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H. Two photon exchange

The complete result at first order in nuclear charge is simplified by the factorization

theorem which implies that recoil e↵ects are confined to soft function contributions involving

real emission. Beyond first order in the nuclear charge, radiative corrections introduce new

operators at the hard scale, and sensitivity to nuclear structure beyond form factors. Let us

briefly discuss the inclusion of such corrections in the formalism.

The factorization formula including second (and higher) order corrections in nuclear

charge takes the same form as Eq. (33). The function J(µ) is unchanged. The function

R(µ) may be taken as unity at the relevant order [recall R ⇠ ↵2L = O(↵3/2) in our counting

↵L2 = O(1)] . Let us focus on the hard and soft functions. In particular, let us consider

the extraction of proton structure information from scattering data. Our goal is to isolate

H(µ = M), which is built from conventionally defined Born form factors, as in Eq. (12),

and analogous hard coe�cient functions arising from two-photon exchange. In the absence

of su�cient data [38] to simultaneously extract the Born form factors and the two-photon

exchange contributions to H(µ = M), hadronic models are employed for the latter [39, 40].

The soft function (as well as the remainder function R and jet function J) is universal to

all of the underlying amplitudes. In place of the static-source limit of Eq. (9), we have now

p
S(µ,�E = 0) = Z

(e)
h Z

(p)
h

������
+ + +

+ + +

������

= 1� ↵
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Re
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u · u0f(u · u0)� 1

⇤
+ Z2

⇥
v · v0f(v · v0)� 1

⇤

+ Z
⇥
u · vf(�u · v � i0) + u0 · v0f(�u0 · v0 � i0) + u · v0f(u · v0)

+ u0 · vf(u0 · v)⇤
�
log

µ2

�2
, (62)

where uµ, u0µ are timelike vectors proportional to initial and final electron momentum,

and vµ, v0µ similarly correspond to the momenta of the initial and final state proton. The

function f(w) was introduced for w � 1 in Eq. (6), and the explicit evaluation of the

20

want to extract this

}
correct data by this factor

- J: refers to collinear region, same as before

- S: include nuclear charge for general soft function (computed through 2-
loop order)

- H(μ)/H(M): must now account for large logs in this factor

d� = H(M)⇥ H(µ)

H(M)
⇥ J(µ)⇥ S(µ)
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• resummation

Feynman integrals yields

f(�w � i0) = �f(w) +
i⇡p

w2 � 1
. (63)

The kinematic constraints,

v0 · u = v · u0 , v0 · u0 = v · u , (64)

may be used to reduce the number of terms appearing in Eq. (62).

In order to extract the hard function at scale µ = M , we write the process as

d� / H(M)⇥ H(µ)

H(M)
⇥ (JRS)(µ) , (65)

evaluating JRS at the soft scale, and thus requiring the ratio H(µ)/H(M), with control

over large logarithms in perturbation theory. The renormalization of the hard function is

now governed by (cf. Appendix A)

d logH

d log µ
= 2


�cusp(↵̄) log
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µ2
+ �cusp(v · v0, ↵̄) + 2�cusp(↵̄) log
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�v · p� i0

+ �(↵̄)

�
. (66)

The cusp function �cusp(↵̄) has been introduced above in Eq. (50), �cusp(w, ↵̄) is given in

Eq. (A7), and the regular anomalous dimension �(↵̄) is

� =
1X

n=0
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4⇡
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�n , �0 = �10 . (67)

The solution to Eq. (66), analogous to Eq. (53), is

log
H(µL)

H(µH)
= � 1

�0


�0 +

✓
log

Q2

µ2
H

+ wf(w) + 2 log
E 0

�E � i0

◆
�cusp
0

�
log r

� �cusp
0

�2
0

⇢
4⇡

↵(µh)

✓
1

r
� 1 + log r

◆
+

✓
�cusp
1

�cusp
0

� �1

�0

◆
(� log r + r � 1)� �1

2�0

log2 r + . . .

�
.

(68)

Expressed in terms of onshell coupling,
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where terms through ↵1 are retained, in the counting ↵ log2(Q2/m2) ⇠ 1. The impact of

successive terms in the resummed perturbative expansion is displayed in Fig. 6.
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proton : Mvµ
electron : pµ

universal functions
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governed by Wilson loops with cusps:

renormalization of hard function of interest: 

solution, summing large logarithms:
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FIG. 6: Same as Fig. 5, but including recoil and nuclear charge corrections (i.e., two photon

exchange and proton vertex corrections).

IV. DISCUSSION

The precision of electron-proton scattering experiments has reached a level demanding

systematic analysis of subleading radiative corrections at two loop order and beyond. We

have presented the general framework that separates physical scales in the scattering process,

allowing a systematic merger of fixed order perturbation theory with large log resummation.

The quantum field theory analysis reveals implicit conventions and assumptions that

often di↵er between applications, such as between scattering and bound state problems.

The definition of the proton charge and magnetic radii in the presence of electromagnetic

radiative corrections is naturally defined in Eq. (12). A comparison to other definitions in

the literature is presented in Appendix B. The separation of soft and hard scales in two

photon exchange is similarly ambiguous in standard treatments. The common Maximon-

Tjon convention [37] implicitly takes momentum-dependent factorization scale µ2 = Q2 for

two-photon exchange, in conflict with the Q2-independent choice µ2 = M2 that is closest to

the implicit convention for vertex corrections.

The exponentiation and cancellation of infrared singularities [10] in physical processes

has often been used to motivate a simple exponentiation of first order corrections in order
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E = 1GeVelectron energy:
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Comparison to previous implementations of radiative corrections, e.g. 
in A1 analysis of electron-proton scattering data

)2 (GeV2Q
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0.25−

0.24−

0.23−

0.22−

0.21−

0.2−

FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.
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resummed EFT result

naive exponentiation of 1-loop, 
(μ2=Q2 in two-photon piece)

naive exponentiation of 1-loop, 
(μ2=M2 in two-photon piece)

- complete analysis: account for floating normalizations, correlated 
shape variations when fitting together with backgrounds 

- discrepancies at 0.5-1% compared to currently applied radiative 
correction models (cf. 0.2-0.5% systematic error budget of A1 experiment)

- conflicting implicit scheme choices for 1PE and 2PE 
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E = 1GeV
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EFT analysis clarifies several issues involving conflicting and/or implicit 
conventions and scheme choices 

1) Scheme choice and definition of radius and “Born” form 
factors

2) Scheme dependence of two-photon exchange

3) Limitations of naive exponentiation
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1) Scheme choice and definition of radius and “Born” form 
factors

The complete (onshell, renormalized) amplitude for the process in Fig. 1 is conventionally

expressed as

hJµi = ūv0


F̃1�

µ + F̃2
i

2
�µ⌫(v0⌫ � v⌫)

�
uv , (10)

where uv = u(p) is a Dirac spinor and the onshell Dirac and Pauli form factors are

F̃1(q
2) = [c1(w, µ) + 2c2(w, µ)]FS(w, µ) ,

F̃2(q
2) = �2c2(w, µ)FS(w, µ) , (11)

with q2 = �2M2(w � 1). For a strongly interacting composite particle like the proton,

perturbative matching is not possible. In this case, the Wilson coe�cients ci(w, µ) in Eq. (11)

are identified as infrared finite “Born” form factors, to be extracted experimentally:

Fi(q
2)Born ⌘ F̃i(q

2)F�1
S (w, µ = M) , (12)

where the choice µ = M is part of the Born convention. For a discussion of Born form factor
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To define an infrared finite observable, consider the process depicted in Fig. 1: scat-

tering of a proton from an electromagnetic source, allowing radiation of energy �E ⌧ M .
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The soft function may be expanded according to photon number,

S = S0� + S1� + S2� + . . . , (15)

and for each contribution we may expand as a series in ↵,

Sn� =
1X

i=n

⇣ ↵̄

4⇡

⌘i

S(i)
n� . (16)
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The complete (onshell, renormalized) amplitude for the process in Fig. 1 is conventionally
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hJµi = ūv0
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F̃1�

µ + F̃2
i

2
�µ⌫(v0⌫ � v⌫)

�
uv , (10)

where uv = u(p) is a Dirac spinor and the onshell Dirac and Pauli form factors are

F̃1(q
2) = [c1(w, µ) + 2c2(w, µ)]FS(w, µ) ,
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hard coefficient soft function

F̃i = FHFS

Multiple conventions in the literature.  Different “Born” form factors, 
different radii (differences typically below current precision)

FH(q2, µ = M) ⌘

Massive particle form factor (e.g. for proton): 
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2) Scheme dependence of two-photon exchange

As for form factors, define hadronic functions in the 
general 2→2 scattering process as the hard component 
in the factorization formula at factorization scale μ=M

Prevailing conventions have 
used conflicting μ=M for 1 
photon exchange, μ=Q for 
2 photon exchange 

)2 (GeV2Q
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δ
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FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.

23

A scale-variation estimate of 
uncertainty in the 2 photon 
exchange subtraction
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3) Limitations of naive exponentiation

⇒ New terms at order α2 L3, α2 L2, α3 L4, …

S(2) =
1

2!
[S(1)]2 � 16⇡2

3
(L� 1)2 . (49)

F. E↵ective theory: resummation

After renormalization in the MS scheme at scale µ, the hard function is free of large

logarithms provided that the matching scale satisfies µH ⇠ Q. Evolution to low scales

µL ⇠ m is governed by (cf. Appendix A)

d logH

d log µ
= 2


�cusp(↵) log

Q2

µ2
+ �(↵)

�
. (50)

The cusp anomalous dimension for massless QED (nf = 1) reads

�cusp =
1X

n=0

⇣ ↵̄

4⇡

⌘n+1

�cusp
n , �cusp

0 = 4 , �cusp
1 = �80

9
, (51)

The regular anomalous dimension � may be similarly expanded,

� =
1X

n=0

⇣ ↵̄

4⇡

⌘n+1

�n , �0 = �6 . (52)

Using these expansions, the solution of Eq. (50) to any order is straightforward. Expressed

in terms of the running coupling,

log

✓
H(µL)

H(µH)

◆
= ��0

�0

⇢
log r + . . .

�
� �cusp

0

�0

⇢
log

Q2

µ2
H

log r +
1

�0


4⇡

↵(µH)

✓
1

r
� 1 + log r

◆

+

✓
�cusp
1

�cusp
0

� �1

�0

◆
(� log r + r � 1)� �1

2�0

log2 r

�
+ . . .

�
, (53)

where r = ↵(µL)/↵(µH), and the first and second curly braces correspond to the terms �(↵)

and �cusp(↵) in Eq. (50), respectively.

We are interested in applications involving large logarithms such that ↵ log2(µ2
H/µ

2
L) ⇠ 1.

In this power counting, terms involving �0 scale as ↵1/2, and neglected terms involving �(↵)

scale as ↵3/2. The leading terms involving the cusp anomalous dimension scale as ↵0, terms

involving �cusp
1 and �1 scale as ↵1, and the remaining neglected terms scale as ↵2. When

combined with one-loop matching computations, the terms retained in Eq. (53) are thus

su�cient to ensure accuracy through order ↵1, accounting for logarithmic enhancements.

The result (53) may be readily expressed in terms of the onshell coupling. Retaining terms

through O(↵) in the above counting,

log

✓
H(µL)

H(µH)

◆
=

↵

4⇡


� 2 log2

µ2
H

µ2
L

� 4 log
µ2
H

µ2
L

log
Q2

µ2
H

+ 6 log
µ2
H

µ2
L

�
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⇒ New terms at order α2 L2

• Total versus individual real photon energy below ΔE : 

log

H(µL)

H(µH)

= � ↵

2⇡
log

2 µ2
H

µ2
L

+ . . .

• Renormalization analysis for subleading logs :

complete analysis: account for floating normalizations, correlated shape 
variations when fitting together with backgrounds.    

S =
X

n

⇣ ↵

4⇡

⌘n
S(n)

a difficult archeological problem.  PRP from e-p appears to require 
something more (expt. syst.: ? / theory systematic: hard TPE)
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summary
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- topic 1: amplitude analysis and z expansion: need to do 
better for elementary amplitudes

- topic 2: muon capture: template for general νe/νμ analysis 
and world’s best (in a tie) rA determination

Summary

- topic 3: radiative corrections and SCET: template for 
exclusive νe/νμ analysis and cautionary tale for % level

- topic 0: critical theory input needed for νe/νμ cross section 
differences and ν amplitudes at the nucleon level


