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topic 0. why

why bother with neutrino interactions?! Isn’t this too hard/
too different/ somebody else’s problem?



topic 0. why

why bother with neutrino interactions?! Isn’t this too hard/
too different/ somebody else’s problem?

“The good news is that

it’s not my problem?”
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long baseline neutrino oscillation experiment is simple in

conception:
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long baseline neutrino oscillation experiment is difficult in
practice:

simple picture is complicated by
= Ve versus Vy cross section differences

need theory for Oye/Oyy, at ~% precision of measurement

and also
= intrinsic Ve component of beam

- degeneracy of uncertainty in detector response and
neutrino interaction cross sections
- imperfect energy reconstruction

aided by near detector but
- beam divergence and oscillation (near flux=#far flux)

need theory for Oy, at a precision depending on the
experimental capabilities
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current paradigm:

constrain neutrino interactions by
- determining nucleon level amplitudes
- parameterizing/measuring/calculating nuclear
modifications

folk paradigms:
constrain neutrino interactions by “perfect theory”

- starting at the quark level

- computing nuclear response

¢¢ ’»
constrain neutrino interactions by perfect expt.
- starting directly at the nuclear level
- parameterizing and measuring every cross section



in any paradigm:
near detector has access to primarily vV, neutrinos

Ve appearance signal is directly impacted by v,/Ve cross
section differences

- kinematics

- 2nd class currents (G parity violation)

- radiative corrections (QED and EW)

- signal definition

having talked the talk, do some walking:
= Vu/Ve in the time reversal process (M p — V n)

= nucleon input uncertainty (e-p,v d = Vv n)
- radiative corrections at GeV (e-p)

nuclear corrections: see talks of W.Van Order, S. Pastore, A.

Ankowski, N. Jachowicz, A. Lovato. experiment: S. Bolognesi;
lots of references: NUSTEC white paper 1706.03621
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Notes:

beyond neutrino oscillations related applications relying on
quantitative nucleon structure:
- fundamental constants (probable 7 sigma shift in Rydberg)
- sigma terms and WIMP-DM direct detection
- ga and BBN

QED is “easy”. But QED + nucleon structure is “hard”

entering a precision realm where percent level corrections to
nucleon structure need to be calculated, not just estimated



topic |.amplitude analysis and z expansion

first, e-p elastic scattering

second, V-n CC scattering




topic |.amplitude analysis and z expansion

Irst, e-p elastic scattering

Sy =

second, V-n CC scattering




recall scattering from extended classical charge distribution:

i _ (1)
ds? ds? pointlike

for the relativistic, QM, case, define

(1) radius as slope of form factor
i d
(JH) = ~vFFy A - o' q, Fy 7“]2_@ = G—QGE(C]Q)
5 p dq g2=0
GE:F1‘|‘4QWF2 GM:Fl F2

P (up to radiative corrections)



Radius extraction requires data over a Q2 range where a simple
Taylor expansion of the form factor is invalid

C 005 data of Bernauer et al. (Al collaboration), PRL 105,242001 (2010)
O | [sensitivity studies based on bounded z expansion fit]
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Radius extraction requires data over a Q2 range where a simple
Taylor expansion of the form factor is invalid

radius error
[fm]

size of re
anomaly
(hydrogen)

0.05 -

data of Bernauer et al. (Al collaboration), PRL 105,242001 (2010)
[sensitivity studies based on bounded z expansion fit]

0.04 - Cut used for radius extraction
0.03 -
0.02 -
<=
= [ |

= " L B 0 BN
0.01 -

O | I | I | I | I |

0 0.2 0.4 0.6 0.8 1

maximum Q2 [GeV?]



Radius extraction requires data over a Q2 range where a simple
Taylor expansion of the form factor is invalid

C 005 data of Bernauer et al. (Al collaboration), PRL 105,242001 (2010)
g | [sensitivity studies based on bounded z expansion fit]
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That’s ok: underlying QCD tells us that Taylor expansion
of form factor in appropriate variable is convergent

. particle thresholds
experimental

kinematic region

Z(q27tcut7t0) _ \/tcut — q2 T \/tcut — tO |
\/tcut _ q2 =+ \/tcut - tO

coefficients in rapidly
convergent expansion encode
nonperturbative QCD




Reanalysis of scattering data reveals strong influence of
shape assumptions

ket electron combination
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Errors larger, but discrepancy remains ‘
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Reanalysis of scattering data reveals strong influence of
shape assumptions
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update: Beyer et al. (Sci
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topic |.amplitude analysis and z expansion

first, e-p elastic scattering

V

second, V-n CC scattering

_— >



Start with the basic process

Vu><u- o(vn — pp) = | - @ .

poorly known axial-vector form factor

A common ansatz for Fa has been employed for the last ~40 years:

9 —2

ipole q
Fjp 1 (q2) :FA(O) <1— —m2)
A

Inconsistent with QCD.

Typically quoted uncertainties are (too) small (e.g. compared to proton
charge form factor!)

1 dFa

1
=<7 ra = 0.674(9) fm




Best source of almost-free neutrons: deuterium

deuteron

Deuterium bubble chamber data

®* SMa

®* SMa

e small statistics, ~3000 events in world data

(-is
(-is

n) nuclear effects

n) experimental uncertainties

EVENTS / 0.1 GeV*

80
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Fermilab |5-foot deuterium bubble

chamber, PRD 28,436 (1983)

also:

ANL | 2-foot deuterium bubble
chamber, PRD 26,537 (1982)

BNL 7-foot deuterium bubble
chamber, PRD23, 2499 (1981)



* Fa with complete error budget:

[al, as,as, a4] — [230(13), —06(10), —38(25), 23(27)]

Cij =
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Derived observables: 1) axial radius 1 dFy

r4 = 0.46(22) fm”

* order of magnitude larger uncertainty compared to historical dipole fits

* impacts comparison to other data, e.g. pion electroproduction, muon
capture
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Derived observables: 2) neutrino-nucleon quasi elastic cross sections
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Tonsup(E, =1GeV) = 10.1(0.9) x 107°? cm?

Tovnsup(E, = 3GeV) = 9.6(0.9) x 107 cm?
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Vi u
discriminating nuclear models N

n P

x10™°

n

GENIE RFG z-expansion O'(VTL —> Iup) — ‘ .

—— GENIE RFG dipole

—¢— MINERVA Data /
poorly known axial form factor

want to extract nuclear and flux effects
from this comparison: but large
nucleon level form factor uncertainty
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topic 2. muon capture



e

muon capture from ground state of muonic hydrogen:

- probes axial nucleon structure: FP, FA
- already competitive determination of rA

- potential for significant improvement

from RJH, Kammel, Marciano, Sirlin 1708.08462
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L = Lsm

o G perturbative matching
L GFVUd — 7! 7
TW+ L= —TVMV (1 =) dy,(1 —~s)u+Hee + ...
l nonperturbative matching
P n
2 2 2
p v G ’Vud‘
H = o - +o0Vyp — 1 £ 5 [Co + Cl(S,u + SP)Z] 53(T)

A = G3|Vya|® x [eo + 1 F(F +1)] x [¢15(0)]* + . ...

factorization: weak hadronic atomic
E? 2M —m 2M +m m
_ v M — . 2 n 2 nF AN 2 Ia 2
€0 27TM2( M) [M—mn 1(q0) + M —m, A(40) N p(90)
Fz(qg)
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expansion in small quantities:

m? m. —m
o T T T
mp mp

- axial radius enters at first order in epsilon, so need all other first
order corrections (to ~10%, for a 10% measurement of rA2)

- will see that other corrections are at first-and-a-half order; need to
ensure against numerical enhancements (need these to ~100%)
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momentum expansion:

sensitivity to momentum dependence in the capture process
2 _ 2 _ 2

in our power counting, rA2 competes with gP, and other
well-determined quantities (g=normalization, r2=slope)

1 + gi, gA _I_\/E g2 _I_GT%)T%?QP T ...

gA: neutron lifetime 4
gl,g2,r12: e-p, e-n scattering + H, muH (see below) vV vV
2mNgaNNfr 1

2 2
5 5 —ggAmN’rA—l—...
mz — 4y

Fp(qg) —

gpiNN: pion-nucleon scattering, and NN scattering v
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hadronic matrix

X expansion: element
f_H
RC = RC(electroweak) + RC(finite size) + RC(electron VP)
W W
matching, computed
running in 4 within QM

Fermi theory

large log Sirlin g function (IR subtraction)
— A
RC(electroweak) = % 4log % —0.595 + 2C + g(my,, B, =0)| +--- = +0.0237(10) V
p
W—J

finite terms (estimate with OPE)

RC(finite size) = —0.005(1) (should be done better: computed Vv
in large nucleus ansatz rE>>rA)

RC(electron VP) = +0.0040(2). V
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isospin violation:

vector form factors: CC from isovector NC
deviations in F1(0): second order in IV (definition of CVC) V4
deviations in Fl(qg2): first order in IV plus first order in g2 v

deviations in F2(0): first order in IV plus 0.5 order in v
kinematic prefactor (numerical estimate: 3.2e-4 << %)

2nd class currents:

_ iFy(q%) Fr(q?
(n|(V* — AM)|p) = tn| F1 (¢*)y" + o\T) vy FA(@P)y"'y° — Fplq) )q“75
2mN my
Fs(q* i Fr(q?
N S(Q)qu_ T(Q)wag wyt ..
my 2my

contribution of FS,FT: first order in IV plus 0.5 order in Vv
kinematic prefactor
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gp "2 20.46(22) w2 = 819 (48)exp (69)g, (6)rc = 8.19(84)

A=

gptheory — 8.25(25)

Gy = 13.04 (72)exp (8)g, (67), 2 (10)rc = 13.04(99)

2

gternal — 13 19(10)

turning the tables, take QCD for granted and extract rA2:

r3(MuCap) = 0.43 (24)exp (3)g, 3)grnvn (3)rc = 0.43(24) fm?

competitive with other methods with existing data, and potential for
Improvement

or (future exp.) = (0.08)exp (0.03)g, (0.03)g, nx (0.03)rc = 0.10 fm”

/

factor 3 improvement 3



muon capture constraints

I | I I I | I I I
vd (dipole) [17]

eN — eN’w (dipole) [17]

Z 2%

complete

P vC (dipole) |20
T Wt exp.) [19]

MuCap this work bUdgets

ot (LHPC [21]

ko . ETMC [22]
lattice QCD <
D n e @t CLS [23]

———i PNDME [24]
\
] | ] ] ] | ] ] | | ] ] | ]

0.2 0.4 IO.6I | IO.8I 1
7"124 (fm2)

RJH, Kammel, Marciano, Sirlin 1708.08462

lattice average: see also Yao, Alvarez-Ruso,
Vicente-Vacas 1708.08776 [ rA2=0.26(4) ]

* potential factor ~3 improvement from next generation muon capture
experiment
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implications for quasielastic neutrino cross sections

121 _
—~ - Jwith radius constraint: ( hatched:
% I 1 |external radius error 0ra2=20% )
0 1 :— _
= :
= 09~
S I
0.8
i existing error (no external
0.7" radius constraint)

o
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gA

test of electron-muon universality

<—— current uncertainty ——»

1.29

1.28

1.27

1.26

34

muon coupling (current uncertainty)

electron coupling (neutron lifetime)



topic 3. radiative corrections and SCET



* eikonal coupling

* factorization of soft region

* proof by induction Yennie, Frautschi, Suura (1961)

= exponentiation of IR divergences, cancellation between real and virtual

But exponentiation of IR divergences does not imply exponentiation of
the entire first order correction
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Large logarithms spoil QED perturbation theory when -q2=Q2~GeV?2

2 E2
F@)? = 1F@)P(1- Y10 21
PP > )P (1 2 log 25 log s +

\W_/

e ~ 0.5
e AFE
+
q

Experimental ansatz sums exponentiates |st order:

Q2 E2
(AE)?

2 E*? «
F@)2(1=L10g 9 ) = IF(@)Pexp | - 2
PP (1= Slog L tog (1 ) = (@) Pexp | -

Captures leading logarithms when
Q~FE, AE~m,

As consistency check, error budget should contain the difference from resumming:

2 2 E2
2 @ 1 —Q l
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1.00

0.95} 10
<085 ¢ |
0.80}
| electron energy:
oplb_ ... E =1GeV
0.0 01 02 03 0.4 O[ée\%j 0.7 08 0.9 1.0 electron energy loss cut:
o AE = 5MeV
—0.15-_
- quoted systematics in Al electron-proton o |
scattering data are 0.2-0.5 % 5 § -020-
8 -5 2nd order in X
o 5 _ nda or
. _y . C 0 5]
- leading order radiative corrections ~30% % ct) -
‘6’ ) I
. J=d —030‘
- need to systematlcally account for | |ist order in o
subleading logarithms, recoil, nuclear charge ~0351

0O 02 04 06 08 1
and structure 0 [CeV?
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>50

discrepancy

075 : ' : ! ‘ . . ‘ . L ; I ' | ' ! . 1 .
0.0 01 02 03 04 05 06 07 0.8 0.9 1.0
2« 1GeV?]

max

- quoted systematics in Al electron-proton
scattering data are 0.2-0.5 %

- leading order radiative corrections ~30%

total radiative

- need to systematically account for
subleading logarithms, recoil, nuclear charge
and structure

38

correction

electron energy:

E =1GeV

electron energy loss cut:

AFE = 5MeV

-0.15-

|
=
b
S

0251

~0.30-

~0.35-

| st order in &

0

02 04 06 08

Q* [GeV”]

1




1.00

potentially
large
uncertainty
from radiative
corrections

electron energy:

0.75

E =1GeV
0.0 01 02 03 04 O[éevO?']G 0.7 08 09 L0 electron energy loss cut:
o AE = 5MeV
~0.15;
- quoted systematics in Al electron-proton o |
scattering data are 0.2-0.5 % 3 5 020
S 5 2nd order in &
T O - i
. - . € 9 025
- leading order radiative corrections ~30% % ct> -
o v I
. s —0.30-_
- need to systematlcally account for ' |1st order in o
subleading logarithms, recoil, nuclear charge -035-

0O 02 04 06 08 1
and structure Q? [CeV?]
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treat the problem in stages:

proton

static source, static source, with recoil with nuclear charge
nonrel. limit rel. limit corrections corrections

(two photon exchange)
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e factorization

Becher, Melnikov (2007)
Chiu, Golf, Kelley, Manohar (2007)

Becher, Neubert (2010)

- physical electron mass regulates collinear divergences  Chiu, Jain, Neill, Rothstein (2012)

[ remainder function starting
at 2-loop (collinear anomaly/rapidity logs) ]

- R given by ratio of Wilson loop matrix elements in m#*0/m=0
40



Sudakov form factor at one loop:

Q 2. Q7 : 2
Hard FH(M):l‘FE — log F—I—SlogF—EH_F}

Collinear F;(y) =1+ 43 log?
70

Large logarithms regardless of choice for U

Fs: exponentiates (evaluate at any scale)

Fj: evaluate at J~m
Fu: evaluate at u~M~Q

Soft Fo(p) =1+ % {2 1og2—2 (log 2—2 _ 1) } \8?/

(two-loop matching, real+virtual see 1605.02613) F=FyFk;Fg
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Two photon exchange

* Nuclear charge corrections introduce new spin structures
(helicity counting: 3 amplitudes at leading power in me/Q)

3
Fr(py" @y, — Y ci(p) T @ TP
1—=1

* In principle, can use e+ and e- data to separately determine
|-photon exchange and 2-photon exchange contributions to ¢;

e However, with available data, measure combination of |-
photon and 2-photon contributions.

* Regardless of treatment of hard coefficients, remaining
radiative corrections are universal
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want to extract this :
correct data by this factor

- J: refers to collinear region, same as before

- S:include nuclear charge for general soft function (computed through 2-

loop order) >< + X +X +><
> >0 XK

- H(p)/H(M): must now account for large logs in this factor

VS(u AE =0) = 2,7 77
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* resummation ,

governed by Wilson loops with cusps:

0
hiv - Dh — h98Tiv - DS A0 = 104 . 9n®) | S, () = Pexp [z/

— OO0

dsv - Ag(x + S?J)]

renormalization of hard function of interest:

dloec H
57 9 Yeusp (O log +%usp v @) + 2%eusp (@

dlog u a)log — z()
‘\\ Aon p"

L
universal functions proton : Mwv

solution, summing large logarithms:

H(pr) :_glo 2 Y

H(ppr) 2m i

log
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do = H(M) x 20 () x ()

total radiative

correction
2
numerically: al? = alog? 3 1 — ol ~ @% , etc.

electron energy: E =1GeV
electron energy loss cut: AE = 5MeV

-0.15 correct
v ; through:
i = 0.2
.9 O(a)
= D
g8 " O(a?)
qu § —0.3-.. 0(1)
8 0350

0 02 04 06 08 1
Q° (GeV?)
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Comparison to previous implementations of radiative corrections, e.g.
in Al analysis of electron-proton scattering data

naive exponentiation of |-loop,

: E=1Gev] .(M2=M2in two-photon piece)
0 o211k AE = 5MeV]
O -\ 1 -
= O B ¢ 4.
%’ 8 ~0.22 | _
s 0 ~«—— resummed EFT result
— £ -023¢ T o
8 8 - i N
- 7 N . . .
S 024f g naive exponentiation of |-loop,
P (M2=Q?2 in two-photon piece)
0 02 04 06 08 1

Q° (GeV?)
- discrepancies at 0.5-1% compared to currently applied radiative

correction models (cf. 0.2-0.5% systematic error budget of Al experiment)

- conflicting implicit scheme choices for | PE and 2PE

- complete analysis: account for floating normalizations, correlated
shape variations when fitting together with backgrounds
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EFT analysis clarifies several issues involving conflicting and/or implicit
conventions and scheme choices

1) Scheme choice and definition of radius and “Born” form
factors

2) Scheme dependence of two-photon exchange

3) Limitations of naive exponentiation
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1) Scheme choice and definition of radius and “Born” form
factors

(JH) = 1y wmggaﬂ”(v;—vy) "

Massive particle form factor (e.g. for proton):

hard coefficient soft function

Multiple conventions in the literature. Different “Born” form factors,
different radii (differences typically below current precision)
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2) Scheme dependence of two-photon exchange

As for form factors, define hadronic functions in the
general 2—2 scattering process as the hard component
in the factorization formula at factorization scale y=M

02— Prevailing conventions have

used conflicting U=M for |

photon exchange, u=Q for
2 photon exchange

~0.21-%

~0.22

~0.23 |

total radiative
correction

~0.24

_ : A scale-variation estimate of
025 T T 0 o8 uncertainty in the 2 photon
Q° (GeV?) exchange subtraction
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3) Limitations of naive exponentiation

* Renormalization analysis for subleading logs :

H 2
(mr) :_glogzﬂﬂ L

H (fom) 2m i

log

= New terms at order &2 L3, &2 L2, &3 L4, ...

* Total versus individual real photon energy below AE :

2
5@ = Ligmp _ 16T

L —1)?
9l 3< )

_ AN o(n)
5= zn: (47‘(’) 5
= New terms at order 2 L2

complete analysis: account for floating normalizations, correlated shape
variations when fitting together with backgrounds.

a difficult archeological problem. PRP from e-p appears to require
something more (expt. syst.: ! / theory systematic: hard TPE)
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summary



Summary

- topic O: critical theory input needed for Ve/Vy cross section
differences and vV amplitudes at the nucleon level

- topic |:amplitude analysis and z expansion: need to do
better for elementary amplitudes

- topic 2: muon capture: template for general Ve/Vy analysis
and world’s best (in a tie) ra determination

- topic 3: radiative corrections and SCET: template for
exclusive Ve/Vy analysis and cautionary tale for % level
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