Effective Field Theories for Electroweak Interactions in Nuclei

Saori Pastore
Winter Workshop on Neutrino-Nucleus Interactions
FNAL - Batavia IL - November 2017

——e EST. 1943 ——__

WITH

Schiavilla (ODU and JLab) \& Carlson, Cirigliano, Dekens, Gandolfi, Mereghetti (LANL)
Piarulli, Pieper, Wiringa (ANL) \& Baroni (U. of SC) \& Girlanda (Salento U. and INFN)
Kiewsky, Marcucci, Viviani (Pisa U. and INFN)
REFERENCES

* Cover similar range of topics as in the NuSTEC School *
- two- and three-nucleon pion exchange interactions
- realistic models of two- and three-nucleon interactions
- realistic models of many-body nuclear electroweak currents
- short-range structure of nuclei, nuclear correlations, and quasi-elastic scattering
with emphasis on
how the nuclear-physics concepts are grounded in quantum field theory

The Microscopic (aka ab initio) Description of Nuclei

GOAL
Develop a comprehensive theory that describes quantitatively and predictably all nuclear structure and reactions

* The ab initio Approach*

In the ab initio Approach one assumes that all nuclear phenomena can be explained in terms of (or emerge from) interactions between nucleons, and interactions between nucleons and external electroweak probes (electrons, photons, neutrinos, DM, ...)

Electroweak Reactions

* $\omega \sim 10^{2} \mathrm{MeV}$: Accelerator neutrinos
* $\omega \sim 10^{1} \mathrm{MeV}$: EM decay, β-decay
* $\omega \lesssim 10^{1} \mathrm{MeV}$: Nuclear Rates for Astrophysics

The ab initio Approach

The nucleus is made of A interacting nucleons and its energy is

$$
H=T+V=\sum_{i=1}^{A} t_{i}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}+\ldots
$$

where $v_{i j}$ and $V_{i j k}$ are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD

2b

$$
\begin{aligned}
\rho & =\sum_{i=1}^{A} \rho_{i}+\sum_{i<j} \rho_{i j}+\ldots \\
\mathbf{j} & =\sum_{i=1}^{A} \mathbf{j}_{i}+\sum_{i<j} \mathbf{j}_{i j}+\ldots
\end{aligned}
$$

Two-body 2 b currents essential to satisfy current conservation

$$
\mathbf{q} \cdot \mathbf{j}=[H, \rho]=\left[t_{i}+v_{i j}+V_{i j k}, \rho\right]
$$

* "Longitudinal" component fixed by current conservation
* "Transverse" component "model dependent"

Time-Ordered-Perturbation Theory

The relevant degrees of freedom of nuclear physics are bound states of QCD

* non relativistic nucleons N
* pions π as mediators of the nucleon-nucleon interaction
* non relativistic Delta's Δ with $m_{\Delta} \sim m_{N}+2 m_{\pi}$

Transition amplitude in time-ordered perturbation theory

$$
T_{f i}=\left\langle N^{\prime} N^{\prime}\right| H_{1} \sum_{n=1}^{\infty}\left(\frac{1}{E_{i}-H_{0}+i \eta} H_{1}\right)^{n-1}|N N\rangle^{*}
$$

$H_{0}=$ free π, N, Δ Hamiltonians
$H_{1}=$ interacting π, N, Δ, and external electroweak fields Hamiltonians

$$
T_{f i}=\left\langle N^{\prime} N^{\prime}\right| T|N N\rangle \propto v_{i j}, \quad T_{f i}=\left\langle N^{\prime} N^{\prime}\right| T|N N ; \gamma\rangle \propto\left(A^{0} \rho_{i j}, \mathbf{A} \cdot \mathbf{j}_{i j}\right)
$$

* Note no pions in the initial or final states, i.e., pion-production not accounted in the theory

Transition amplitude in time-ordered perturbation theory

Insert complete sets of eigenstates of H_{0} between successive terms of H_{1}

$$
T_{f i}=\left\langle N^{\prime} N^{\prime}\right| H_{1}|N N ; \gamma\rangle+\sum_{|I\rangle}\left\langle N^{\prime} N^{\prime}\right| H_{1}|I\rangle \frac{1}{E_{i}-E_{I}}\langle I| H_{1}|N N ; \gamma\rangle+\ldots
$$

The contributions to the $T_{f i}$ are represented by time ordered diagrams

Example: seagull pion exchange current

$+$

N number of H_{1} 's (vertices) $\rightarrow \mathrm{N}$! time-ordered diagrams

Nuclear Chiral Effective Field Theory ($\chi \mathrm{EFT}$) approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

* $\chi \mathrm{EFT}$ is a low-energy $\left(Q \ll \Lambda_{\chi} \sim 1 \mathrm{GeV}\right.$) approximation of QCD
* It provides effective Lagrangians describing π 's, N 's, Δ 's, \ldots interactions that are expanded in powers n of a perturbative (small) parameter Q / Λ_{χ}

$$
\mathscr{L}_{\text {eff }}=\mathscr{L}^{(0)}+\mathscr{L}^{(1)}+\mathscr{L}^{(2)}+\ldots+\mathscr{L}^{(n)}+\ldots
$$

* The coefficients of the expansion, Low Energy Constants (LECs), are unknown and need to be fixed by comparison with exp data, or take them from LQCD
* The systematic expansion in Q naturally has the feature

$$
\langle\mathscr{O}\rangle_{1 \text {-body }}>\langle\mathscr{O}\rangle_{2 \text {-body }}>\langle\mathscr{O}\rangle_{3 \text {-body }}
$$

* A theoretical error due to the truncation of the expansion can be assigned

(Naïve) Power Counting

Each contribution to the $T_{f i}$ scales as
$\alpha_{i}=\#$ of derivatives (momenta) in H_{1};
$\beta_{i}=\#$ of π 's;
$N=$ \# of vertices; $N-1=$ \# of intermediate states;
$L=$ \# of loops

$$
H_{1} \text { scaling } \sim \underbrace{Q^{1}}_{H_{\pi N \Delta}} \times \underbrace{Q^{1}}_{H_{\pi \pi N N}} \times \underbrace{Q^{0}}_{H_{\pi \gamma N \Delta}} \times Q^{-2} \sim Q^{0}
$$

$$
\begin{gathered}
\text { denominators } \sim \frac{1}{E_{i}-H_{0}}|I\rangle \sim \frac{1}{2 m_{N}-\left(m_{\Delta}+m_{N}+\omega_{\pi}\right)}|I\rangle=-\frac{1}{m_{\Delta}-m_{N}+\omega_{\pi}}|I\rangle \sim \frac{1}{Q}|I\rangle \\
Q^{1}=Q^{0} \times Q^{-2} \times Q^{3}
\end{gathered}
$$

* This power counting also follows from considering Feynman diagrams, where loop integrations are in 4D

π, N and Δ Strong Vertices

$$
\begin{aligned}
& H_{\pi N N}=\frac{g_{A}}{F_{\pi}} \int \mathrm{d} \mathbf{x} N^{\dagger}(\mathbf{x})\left[\boldsymbol{\sigma} \cdot \nabla \pi_{a}(\mathbf{x})\right] \tau_{a} N(\mathbf{x}) \quad \longrightarrow \quad V_{\pi N N}=-i \frac{g_{A}}{F_{\pi}} \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\sqrt{2 \omega_{k}}} \tau_{a} \sim Q^{1} \times Q^{-1 / 2} \\
& H_{\pi N \Delta}=\frac{h_{A}}{F_{\pi}} \int \mathrm{d} \mathbf{x} \Delta^{\dagger}(\mathbf{x})\left[\mathbf{S} \cdot \nabla \pi_{a}(\mathbf{x})\right] T_{a} N(\mathbf{x}) \quad \longrightarrow \quad V_{\pi N \Delta}=-i \frac{h_{A}}{F_{\pi}} \frac{\mathbf{S} \cdot \mathbf{k}}{\sqrt{2 \omega_{k}}} T_{a} \sim Q^{1} \times Q^{-1 / 2}
\end{aligned}
$$

$g_{A} \simeq 1.27 ; F_{\pi} \simeq 186 \mathrm{MeV} ; h_{A} \sim 2.77$ (fixed to the width of the Δ) are 'known' LECs

$$
\begin{aligned}
& \pi_{a}(\mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 \omega_{k}}}\left[c_{\mathbf{k}, a} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}}+\text { h.c. }\right] \\
& N(\mathbf{x})=\sum_{\mathbf{p}, \sigma \tau} b_{\mathbf{p}, \sigma \tau} \mathrm{e}^{\mathrm{p} \cdot \mathbf{x}} \chi_{\sigma \tau}
\end{aligned}
$$

χ EFT nucleon-nucleon potential at LO

$$
\begin{aligned}
& T_{f i}^{\mathrm{LO}}=\left\langle N^{\prime} N^{\prime}\right| H_{\mathrm{CT}, 1}|N N\rangle+\sum_{|I\rangle}\left\langle N^{\prime} N^{\prime}\right| H_{\pi N N}|I\rangle \frac{1}{E_{i}-E_{I}}\langle I| H_{\pi N N}|N N\rangle
\end{aligned}
$$

$\underline{\text { Leading order nucleon-nucleon potential in } \chi \mathrm{EFT}}$

$$
v_{\mathrm{NN}}^{\mathrm{LO}}=v_{\mathrm{CT}}+v_{\pi}=C_{S}+C_{T} \boldsymbol{\sigma}_{1} \cdot \sigma_{2}-\frac{g_{A}^{2}}{F_{\pi}^{2}} \frac{\sigma_{1} \cdot \mathbf{k} \sigma_{2} \cdot \mathbf{k}}{\omega_{k}^{2}} \tau_{1} \cdot \tau_{2}
$$

* Configuration space *

$$
\begin{gathered}
v_{12}=\sum_{p} v_{12}^{p}(r) O_{12}^{p} ; \quad O_{12}=1, \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}, S_{12} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \\
S_{12}=3 \boldsymbol{\sigma}_{1} \cdot \hat{\mathbf{r}} \boldsymbol{\sigma}_{2} \cdot \hat{\mathbf{r}}-\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}
\end{gathered}
$$

χ EFT nucleon-nucleon potential at NLO (without Δ 's)

* At NLO there are 7 LEC's, C_{i}, fixed so as to reproduce nucleon-nucleon scattering data (order of k data)
* C_{i} 's multiply contact terms with 2 derivatives acting on the nucleon fields (∇N)
* Loop-integrals contain ultraviolet divergences reabsorbed into $g_{A}, \mathrm{C}_{S}, \mathrm{C}_{T}$, and C_{i} 's (for example, use dimensional regularization)
* Configuration space *

$$
v_{12}=\sum_{p} v_{12}^{p}(r) O_{12}^{p} ; \quad O_{12}=\left[1, \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}, S_{12}, \mathbf{L} \cdot \mathbf{S}\right] \otimes\left[1, \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right]
$$

Nucleon-nucleon potential

Aoki et al. Comput.Sci.Disc.1(2008)015009

$$
\begin{gathered}
\mathrm{CT}=\text { Contact Term }(\text { short-range }) ; \\
\text { OPE }=\text { One Pion Exchange }\left(\text { range } \sim \frac{1}{m \pi}\right) ; \\
\text { TPE }=\text { Two Pion Exchange }\left(\text { range } \sim \frac{1}{2 m \pi}\right)
\end{gathered}
$$

Nucleon-Nucleon Potential and the Deuteron

$$
M= \pm 1 \quad M=0
$$

Constant density surfaces for a polarized deuteron in the $M= \pm 1$ (left) and $M=0$ (right) states

[^0]Back-to-back $n p$ and $p p$ Momentum Distributions

Wiringa et al. PRC89(2014)024305

JLab, Subedi et al. Science320(2008)1475

Nuclear properties are strongly affected by two-nucleon interactions!
χ EFT many-body potential: Hierarchy
2N Force \quad 3N Force $4 N$ Force

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

$\mathrm{N}^{3} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

Machleidt \& Sammarruca - PhysicaScripta91(2016)083007
CT $=$ Contact Term (short-range);
OPE $=$ One Pion Exchange (range $\sim \frac{1}{m \pi}$);
TPE $=$ Two Pion Exchange (range $\sim \frac{1}{2 m \pi}$)

Nuclear Interactions and the role of the Δ

Courtesy of Maria Piarulli

* N3LO with Δ nucleon-nucleon interaction constructed by

Piarulli et al. in PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 with $\Delta^{\prime} S$
fits $\sim 2000(\sim 3000)$ data up $125(200) \mathrm{MeV}$ with $\chi^{2} /$ datum ~ 1;

* N2LO with Δ 3-nucleon force fits ${ }^{3} \mathrm{H}$ binding energy and the $n d$ scattering length

"Phenomenological" aka "Conventional" aka "Traditional" aka "Realistic" Two- and Three- Nucleon Potentials

Nuclear Hamiltonian

$$
H=\sum_{i} K_{i}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}
$$

K_{i} : Non-relativistic kinetic energy, $m_{n}-m_{p}$ effects included

Argonne $\mathrm{v}_{18}: v_{i j}=v_{i j}^{\gamma}+v_{i j}^{\pi}+v_{i j}^{I}+v_{i j}^{S}=\sum v_{p}\left(r_{i j}\right) O_{i j}^{p}$

- 18 spin, tensor, spin-orbit, isospin, etc., operators
- full EM and strong CD and CSB terms included
- predominantly local operator structure
- fits Nijmegen PWA93 data with $\chi^{2} /$ d.o.f. $=1.1$

Wiringa, Stoks, \& Schiavilla, PRC 51, (1995)

Urbana \& Illinois: $V_{i j k}=V_{i j k}^{2 \pi}+V_{i j k}^{3 \pi}+V_{i j k}^{R}$

- Urbana has standard $2 \pi P$-wave + short-range repulsion for matter saturation
- Illinois adds $2 \pi S$-wave $+3 \pi$ rings to provide extra $T=3 / 2$ interaction
- Illinois-7 has four parameters fit to 23 levels in $A \leq 10$ nuclei

Pieper, Pandharipande, Wiringa, \& Carlson, PRC 64, 014001 (2001)
Pieper, AIP CP 1011, 143 (2008)

Courtesy of Bob Wiringa

* AV18 fitted up to 350 MeV , reproduces phase shifts up to $\sim 1 \mathrm{GeV}$ *

Spectra of Light Nuclei

M. Piarulli et al. - arXiv:1707.02883

* one-pion-exchange physics dominates *
* it is included in both chiral and "conventional" potentials *

Chiral Potentials (Incomplete List of Credits)

* van Kolck et al.; PRL72(1994)1982-PRC53(1996)2086
* Kaiser, Weise et al.; NPA625(1997)758-NPA637(1998)395
* Epelbaum, Glöckle, Meissner ${ }^{*}$; RevModPhys81(2009)1773 and references therein
* Entem and Machleidt*; PhysRept503(2011)1 and references therin
* Chiral Potentials suited for Quantum Monte Carlo calculations *
* Gezerlis et al. PRL111(2013)032501-PRC90(2014)054323; Lynn et al. PRL113(2014)192501
* Piarulli et al. ${ }^{*}$ PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 (with $\Delta^{\prime} s$)
* Potentials fitted and used in many-body calculations

External Electromagnetic Field

* EM H_{1} obtained by minimal substitution in the π - and N -derivative couplings (same as doing $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$, minimal coupling)

$$
\begin{aligned}
\nabla \pi_{\mp}(\mathbf{x}) & \rightarrow[\nabla \mp i e \mathbf{A}(\mathbf{x})] \pi_{\mp}(\mathbf{x}) \\
\nabla N(\mathbf{x}) & \rightarrow\left[\nabla-i e e_{N} \mathbf{A}(\mathbf{x})\right] N(\mathbf{x}), \quad e_{N}=\left(1+\tau_{z}\right) / 2 \\
& * \text { same LECs as the Strong Vertices * }
\end{aligned}
$$

* This is equivalent to say that the currents are conserved,
i.e., the continuity equation is satisfied

External Electromagnetic Field

μ_{p}, μ_{n}	$d_{8}^{\prime}, d_{9}^{\prime}, d_{21}^{\prime}$	$C_{15}^{\prime}, C_{16}^{\prime}$
$H_{\gamma N N}$		

"Non-Minimal" Electromagnetic Vertices

* EM H_{1} involving the tensor field $F_{\mu \nu}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)$

LECs are not constrained by the strong interaction there are additional LECs fixed to EM observables

* $H_{\gamma N N}$ obtained by non-relativistic reduction of the covariant single nucleon currents constrained to $\mu_{p}=2.793 \mathrm{n} . \mathrm{m}$. and $\mu_{n}=-1.913 \mathrm{n} . \mathrm{m}$.
* $H_{\gamma \pi N N}$ involves $\nabla \pi$ and ∇N and 3 new LECs (2 of them are "saturated" by the Δ)
* $H_{C T 2 \gamma}$ involves 2 new LECs
* These are the so called the "transverse" currents

Electromagnetic Currents from Chiral Effective Field Theory

$$
\mathrm{LO}: \mathbf{j}^{(-2)} \sim \mathbf{e Q}^{-2}
$$

* 3 unknown Low Energy Constants: fixed so as to reproduce $d,{ }^{3} \mathrm{H}$, and ${ }^{3} \mathrm{He}$ magnetic moments

$$
\begin{aligned}
& \text { unknown LEC's } \rightarrow \sin ^{\infty}+\cdots \mid
\end{aligned}
$$

Pastore et al. PRC78(2008)064002 \& PRC80(2009)034004 \& PRC84(2011)024001

* analogue expansion exists for the Axial nuclear current - Baroni et al. PRC93 (2016)015501 *

Technicalities I: Reducible Contributions

4 interaction Hamiltonians $\longrightarrow 4$! time ordered diagrams

Reducible

Irreducible direct

Irreducible crossed

$|\Psi\rangle \simeq|\phi\rangle+\frac{1}{E_{i}-H_{0}} v^{\pi}|\phi\rangle+\ldots$

$$
\left\langle\Psi_{f}\right| \mathbf{j}\left|\Psi_{i}\right\rangle \simeq\left\langle\phi_{f}\right| \mathbf{j}\left|\phi_{i}\right\rangle+\left\langle\phi_{f}\right| v^{\pi} \frac{1}{E_{i}-H_{0}} \mathbf{j}+\text { h.c. }\left|\phi_{i}\right\rangle+\ldots
$$

* Need to carefully subtract contributions generated by the iterated solution of the Schrödinger equation

Technicalities II: The Cutoff

* χ EFT operators have a power law behavior in Q

1. introduce a regulator to kill divergencies at large Q, e.g., $C_{\Lambda}=e^{-(Q / \Lambda)^{n}}$
2. pick n large enough so as to not generate spurious contributions

$$
C_{\Lambda} \sim 1-\left(\frac{Q}{\Lambda}\right)^{n}+\ldots
$$

3. for each cutoff Λ re-fit the LECs
4. ideally, your results should be cutoff-independent

* In $r_{i j}$-space this corresponds to cutting off the short-range part of the operators that make the matrix elements diverge at $r_{i j}=0$

Convergence and cutoff dependence

$n p$ capture x -section/ μ_{V} of $A=3$ nuclei
bands represent nuclear model dependence [NN(N3LO)+3N(N2LO) - AV18+UIX]

* $n p d \gamma$ x-section and $\mu_{V}\left({ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}\right)$ m.m. are within 1% and 3% of EXPT
* negligible dependence on the cutoff

Predictions with χ EFT EM currents for the deuteron Charge and Quadrupole f.f.'s

Bands represent cutoff Λ dependence

* Calculations include nucleonic form factors taken from EXPT data *
J.Phys.G34(2007)365 \& PRC87(2013)014006

Predictions with χ EFT EM currents for the deuteron magnetic f.f.

Bands represent cutoff Λ dependence

PRC86(2012)047001 \& PRC87(2013)014006

Predictions with χ EFT EM currents for ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ magnetic f.f.'s

LO/N3LO with AV18+UIX - LO/N3LO with χ-potentials NN(N3LO) $+3 \mathrm{~N}(\mathrm{~N} 2 \mathrm{LO})$

* ${ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$ m.m.'s used to fix EM LECs; $\sim 10 \%$ correction from two-body currents
* Two-body corrections crucial to improve agreement with EXPT data

Piarulli et al. PRC87(2013)014006

Electromagnetic Currents from Nuclear Interactions aka Standard Nuclear Physics Approach (SNPA) Currents aka Meson Exchange Currents (MEC)

$$
\mathbf{q} \cdot \mathbf{j}=[H, \rho]=\left[t_{i}+v_{i j}+V_{i j k}, \rho\right]
$$

1) "Longitudinal" component fixed by current conservation 2) "Plus transverse" component "model dependent"

$$
\begin{aligned}
\mathbf{j} & =\mathbf{j}^{(1)} \\
& +\mathbf{j}^{(2)}(v)+ \\
& +\mathbf{j}^{(3)}(V)
\end{aligned}
$$

* If $v_{i j}=\mathrm{AV} 18 \rightarrow \mathbf{j}^{(2)}(v)$ has the same range of applicability $(\sim 1 \mathrm{GeV})$ as the AV18*

Villars, Myiazawa (40-ies), Chemtob, Riska, Schiavilla ... see, e.g., Marcucci et al. PRC72(2005)014001 and references therein

Chiral vs Conventional Approach

Girlanda et al. PRL105(2010)232502

Power Counting doesn't know about suppressions/cancellations at LO

Magnetic Moments and M1 Transitions

* 2 b electromagnetic currents bring the THEORY in agreement with the EXPT
* $\sim 40 \%$ 2b-current contribution found in ${ }^{9} \mathrm{C}$ m.m.
* $\sim 60-70 \%$ of total 2 b -current component is due to one-pion-exchange currents * $\sim 20-30 \% 2 \mathrm{~b}$ found in M1 transitions in ${ }^{8} \mathrm{Be}$

Error Estimate

EE et al. error algorithm
Epelbaum, Krebs, and
Meissner EPJA51(2015)53

$$
\begin{aligned}
& \delta^{\mathrm{N} 3 \mathrm{LO}}= \max \left[Q^{4} \mu^{\mathrm{LO}}, Q^{3}\left|\mu^{\mathrm{LO}}-\mu^{\mathrm{NLO}}\right|,\right. \\
& Q^{2}\left|\mu^{\mathrm{NLO}}-\mu^{\mathrm{N} 2 \mathrm{LO}}\right| \\
&\left.Q^{1}\left|\mu^{\mathrm{N} 2 \mathrm{LO}}-\mu^{\mathrm{N} 3 \mathrm{LO}}\right|\right] \\
& Q=\max \left[\frac{m_{\pi}}{\Lambda}, \frac{p}{\Lambda}\right]
\end{aligned}
$$

m.m.	THEO	EXP
${ }^{9} \mathrm{C}$	$-1.35(4)(7)$	$-1.3914(5)$
${ }^{9} \mathrm{Li}$	$3.36(4)(8)$	$3.4391(6)$

* 'N3LO- Δ ' corrections can be 'large' *
* "Conventional" and $\chi \mathrm{EFT}$ currents qualitatively in agreement, $\chi \mathrm{EFT}$ isoscalar currents provide better description exp data *
Pastore et al. PRC87(2013)035503

Recent Developments on ${ }^{12} C$

Quantum Monte Carlo Calculations of Nuclear Responses and Sum Rules

Electromagnetic Transverse Responses

More by Alessandro Lovato on THUR @ 2:30 pm WH3NE
Lovato et al. PRC91(2015)062501 + arXiv:1605.00248

Chiral Electroweak Currents (Incomplete List of Credits)

* Electromagnetic Currents *
* Park, Min, and Rho et al. - NPA596(1996)515 applications to $A=2-4$ systems including magnetic moments and M1 properties and radiative captures by Song, Lazauskas, Park at al.
* Meissner, Kölling, Epelbaum, Krebs et al. - PRC80(2009)045502 \& PRC84(2011)054008 applications to A=2-4 systems including d and ${ }^{3} \mathrm{He}$ photodisintegration by Rozpedzik et al.; d magnetic f.f. by Kölling, Epelbaum, Phillips; radiative $N-d$ capture by Skibinski et al. (2014)
* Phillips
applications to deuteron static properties and f.f.'s

* Axial Currents *

* Park, Min, and Rho et al. - PhysRept233(1993)341 applications to $\mathrm{A}=2-4$ systems including μ-capture, pp-fusion, hep -
* Krebs and Epelbaum et al. - AnnalsPhys378(2017)317
* Baroni et al. - PRC93(2016)015501 applications to low-energy neutrino scattering off d and Quantum Monte Carlo calculations of β-decay matrix elements in $\mathrm{A}=3-10$ nuclei

Observations

* Chiral Effective Field Theory *

* Chiral Formulation of Nuclear Physics is extremely successful
* But limited to low-energies
* Inclusion of the Δ possibly allows for applications to higher energies
* "Conventional" Formulation *
* "Conventional" Formulation of Nuclear Physics is extremely successful
* But hard to be systematically improved
* "Conventional" Currents (other names are Meson Exchange Currents, MEC, or Standard Nuclear Physics Approach Currents, SNAP) satisfy the continuity equation (with, e.g., the AV18) by construction (they have the same range of applicability as the AV18, i.e. $\sim 1 \mathrm{GeV}$)

Conclusion and Outlook I

* The Microscopic picture of the nucleus based on many-body interactions and electroweak currents successfully explains the data both qualitatively and quantitatively
* It explains the spectra and shapes of nuclei
* It has been validated against electromagnetic observables in a wide range of energies from keV (relevant to astrophysics) to GeV (relevant to accelerator neutrino experiments)
* Two-body physics, correlations and two-body currents, is essential to understand the data both for static nuclear properties (spectra, electromagnetic moments, nuclear
form factors) and dynamical properties (transitions in low-lying nuclear states, nuclear responses)
* We want the same coherent picture for interactions with neutrinos *

Nuclei and Neutrinos

* v-A scattering "Anomalies" the QE region * " g_{A}-problem" low-values of momentum/energy transfer
* Scarce data at moderate values of momentum transfer

"Anomalies" ~ GeV

Neutrino-Nucleus scattering
CCQE on ${ }^{12} \mathrm{C}$

Alvarez-Ruso arXiv:1012.3871

Gamow-Teller Matrix Elements Theory vs Expt

$$
\text { in } 3 \leq \mathrm{A} \leq 18 \longrightarrow g_{A}^{\mathrm{eff}} \simeq 0.80 g_{A}
$$

Chou et al. PRC47(1993)163

$$
\beta \text { - and } 0 v \beta \beta \text {-decay }
$$

Berna U.

Nuclear Interactions and Axial Currents

The nucleus is made of A non-relativistic interacting nucleons and its energy is

$$
H=T+V=\sum_{i=1}^{A} t_{i}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}+\ldots
$$

where $v_{i j}$ and $V_{i j k}$ are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD;
we use AV18+IL7

LO

N3LO
$+\ldots \quad N 4 L O$
A. Baroni et al. PRC93(2016)015501
H. Krebs et al. Ann.Phy.378(2017)

Single β-decay Matrix Elements in $A=6-10$

Pastore et al. arXiv:1709.03592

Based on $g_{A} \sim 1.27$ no quenching factor

* data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163

Fundamental Physics Quests: Double Beta Decay

observation of $0 \vee \beta \beta$-decay
lepton \# $L=l-\bar{l}$ not conserved
\rightarrow
implications in
matter-antimatter imbalance

Majorana Demonstrator

* detectors' active material ${ }^{76} G e$ *
$0 \vee \beta \beta$-decay $\tau_{1 / 2} \gtrsim 10^{25}$ years (age of the universe 1.4×10^{10} years)
1 ton of material to see (if any) ~ 5 decays per year
* also, if nuclear m.e.'s are known, absolute v-masses can be extracted *

2015 Long Range Plane for Nuclear Physics

Momentum Dependence

* Peaks at $\sim 200 \mathrm{MeV}$
* no 'pion-exchange-like' correlation operators $U_{i j}$
* yes 'pion-exchange-like' correlation operators $U_{i j}$
* $\sim 10 \%$ increase in the matrix elements corresponds to a ' g_{A}-quenching' of ~ 0.95
* as opposed to ~ 0.83 found in $A=10$ single beta decay

Recent Developments on ${ }^{12} C$: Weak Responses

Alvarez-Ruso arXiv:1012.3871

$$
q=[300-750] \mathrm{MeV}
$$

Lovato, Gandolfi et al. - PRL112(2014)182502

More by Alessandro Lovato on THUR @ 2:30 pm WH3NE

Conclusion and Outlook II

* We are constructing a coherent picture of neutrino-nucleus interactions spanning wide rage of energy and momenta
* Many-body correlations contribute to explain the " g_{A}-problem"
* Studies on neutrinoless double beta decay indicate a less severe " g_{A}-problem" at moderate values of momentum transfer
* Two-body physics, correlations and two-body currents, play a crucial role in the explanation of electromagnetic responses of nuclei
* Microscopic Calculations of weak response indicate that two-body physics important in electroweak responses More by Alessandro Lovato on THUR @ 2:00 pm
* We are addressing how to retain two-body physics in approximated Microscopic calculations of responses in $A>12$ nuclei
* Benchmark with existing exact calculations by Lovato et al. is excellent
* All this work impacts on Fundamental Physics Quests! *

Outlook

Fundamental Physics Quests: Accelerator Neutrinos

LBNF

T2K
neutrinos oscillate
\rightarrow
they have tiny masses
=
BSM physics
Beyond the Standard Model
Simplified 2 flavors picture:

$$
P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{2 E_{v}}\right)
$$

*Unknown *
v-mass hierarchy, CP-violation, accurate mixing angles

Neutrino-Nucleus scattering

$$
\text { CCQE on }{ }^{12} \mathrm{C}
$$

Alvarez-Ruso arXiv:1012.3871

DUNE, MiniBoone, T2K, Minerva \ldots active material $*{ }^{12} \mathrm{C},{ }^{40} \mathrm{Ar},{ }^{16} \mathrm{O},{ }^{56} \mathrm{Fe}, \ldots$ *

Inclusive (e, e^{\prime}) scattering: Intro to Short-Time-Approximation

* v / e inclusive xsecs are completely specified by the response functions
* Two response functions for $\left(e, e^{\prime}\right)$ inclusive xsec

$$
\left.R_{\alpha}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\left|\langle f| O_{\alpha}(\mathbf{q})\right| 0\right\rangle\left.\right|^{2} \quad \alpha=L, T
$$

Longitudinal response induced by $O_{L}=\rho$
Transverse response induced by $O_{T}=\mathbf{j}$

> * Sum Rules *

Exploit integral properties of the response functions +
 closure to avoid explicit calculation of the final states

$$
\begin{gathered}
S(q, \tau)=\int_{0}^{\infty} d \omega K(\tau, \omega) R_{\alpha}(q, \omega) \\
* \text { Coulomb Sum Rules * } \\
S_{\alpha}(q)=\int_{0}^{\infty} d \omega R_{\alpha}(q, \omega) \propto\langle 0| O_{\alpha}^{\dagger}(\mathbf{q}) O_{\alpha}(\mathbf{q})|0\rangle
\end{gathered}
$$

Sum Rules and Two-body Currents: Excess Transverse Strength

$$
\begin{aligned}
S_{T}(q) & \propto\langle 0| \mathbf{j}^{\dagger} \mathbf{j}|0\rangle \\
& \propto\langle 0| \mathbf{j}_{1 b}^{\dagger} \mathbf{j}_{1 b}|0\rangle+\langle 0| \mathbf{j}_{1 b}{ }^{\dagger} \mathbf{j}_{2 b}|0\rangle+\ldots
\end{aligned}
$$

- $\mathbf{j}=\mathbf{j}_{1 b}+\mathbf{j}_{2 b}$
- enhancement of the transverse response is due to interference between $1 b$ and $2 b$ currents AND presence of two-nucleon correlations

Carlson et al. PRC65(2002)024002

$$
\left\langle\mathbf{j}_{1 b}^{\dagger} \mathbf{j}_{2 b} v_{\pi}\right\rangle \propto\left\langle v_{\pi}^{2}\right\rangle>0
$$

Carlson at latest INT neutrino workshop Dec. 2016

Recent Developments on ${ }^{12} C$

Quantum Monte Carlo Calculations of Nuclear Responses and Sum Rules

Charge-Current Cross Section
CCQE on ${ }^{12} \mathrm{C}$

Alvarez-Ruso arXiv: 1012.3871

Electromagnetic Transverse Responses

$$
q=[300-750] \mathrm{MeV}
$$

Lovato et al. PRC91(2015)062501 + arXiv:1605.00248
~ 100 million core hours

CHALLENGE:

How do we describe electroweak-scattering off $A>12$ nuclei

Factorization: Short-Time Approximation

$$
\begin{gathered}
R_{\alpha}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\langle 0| O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| O_{\alpha}(\mathbf{q})|0\rangle \\
R_{\alpha}(q, \omega)=\int d t\langle 0| O_{\alpha}^{\dagger}(\mathbf{q}) e^{i(H-\omega) t} O_{\alpha}(\mathbf{q})|0\rangle
\end{gathered}
$$

At short time, expand $P(t)=e^{i(H-\omega) t}$ and keep up to 2b-terms

$$
\begin{gathered}
H \sim \sum_{i} t_{i}+\sum_{i<j} v_{i j} \\
\text { and }
\end{gathered}
$$

$$
O_{i}^{\dagger} P(t) O_{i}+O_{i}^{\dagger} P(t) O_{j}+O_{i}^{\dagger} P(t) O_{i j}+O_{i j}^{\dagger} P(t) O_{i j}
$$

1b

Factorization I: The Plane Wave Impulse Approximation - PWIA

In PWIA:

Response functions given by incoherent scattering off single nucleons that propagate freely in the final state (plane waves)

$$
\begin{aligned}
R_{\alpha}(q, \omega)= & \sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\langle 0| O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| O_{\alpha}(\mathbf{q})|0\rangle \\
O_{\alpha}(\mathbf{q}) & =O_{\alpha}^{(1)}(\mathbf{q})=1 \mathrm{~b} \\
|f\rangle & \sim e^{i(\mathbf{k}+\mathbf{q}) \cdot \mathbf{r}}=\text { free single nucleon w.f. }
\end{aligned}
$$

* PWIA Longitudinal Response in terms of the p-momentum distribution $n_{p}(\mathbf{k}) *$

$$
R_{L}^{\mathrm{PWIA}}(q, \omega)=\int d \mathbf{k} n_{p}(\mathbf{k}) \delta\left(\omega-\frac{(\mathbf{k}+\mathbf{q})^{2}}{2 m_{N}}+\frac{\mathbf{k}^{2}}{2 m_{N}}\right)
$$

Factorization II: The Short-Time Approximation - STA

In STA:
Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a correlated pair of nucleons

$$
R_{\alpha}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\langle 0| O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| O_{\alpha}(\mathbf{q})|0\rangle
$$

$$
O_{\alpha}(\mathbf{q})=O_{\alpha}^{(1)}(\mathbf{q})+O_{\alpha}^{(2)}(\mathbf{q})=1 \mathrm{~b}+2 \mathrm{~b}
$$

$$
|f\rangle \sim\left|\psi_{p, P, J, M, L, S, T, M_{T}}(r, R)\right\rangle=\text { correlated two }- \text { nucleon w.f. }
$$

We retain two-body physics consistently in the nuclear interactions and electroweak currents

* $R_{\alpha}(q, \omega)$ requires only direct calculation of g.s. $|0\rangle$ w.f.'s *
* STA can be implemented to accommodate for more two-body physics, e.g., pion-production induced by e and v

The Short-Time Approximation

In STA:

Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a correlated pair of nucleons

$$
\begin{aligned}
R_{\alpha}(q, \omega) & =\sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\langle 0| O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle\langle f| O_{\alpha}(\mathbf{q})|0\rangle \\
O_{\alpha}(\mathbf{q}) & =O_{\alpha}^{(1)}(\mathbf{q})+O_{\alpha}^{(2)}(\mathbf{q})=1 \mathrm{~b}+2 \mathrm{~b}
\end{aligned}
$$

$|f\rangle \quad$ is a function of \mathbf{p} and \mathbf{P} e.g. for free propagator $\sim e^{i \mathbf{p} \cdot \mathbf{r}} e^{i \mathbf{P} \cdot \mathbf{R}}$
$|f\rangle \sim\left|\psi_{p, P, J, M, L, S, T, M_{T}}(r, R)\right\rangle=$ correlated two - nucleon w.f.
$R_{\alpha}(q, \omega) \quad \sim \int \delta\left(\omega+E_{0}-E_{f}\right) d \Omega_{P} d \Omega_{p} d P d p\left[p^{2} P^{2}\langle 0| O_{\alpha}^{\dagger}(\mathbf{q})|\mathbf{p}, \mathbf{P}\rangle\langle\mathbf{p}, \mathbf{P}| O_{\alpha}(\mathbf{q})|0\rangle\right]$

The Short-Time Approximation

transverse 1b
1b -600 Mev

300 core hours with $1 \mathrm{~b}+2 \mathrm{~b}$ for ${ }^{4} \mathrm{He}$
Preliminary results

1 b vs $1 \mathrm{~b}+2 \mathrm{~b}$

The Short-Time Approximation

Longitudinal Response function at $q=500 \mathrm{MeV}$

The Short-Time Approximation

Longitudinal vs Transverse Response Function at $q=500 \mathrm{MeV}$

Conclusion and Outlook III

* We are constructing a coherent picture of neutrino-nucleus interactions spanning wide rage of energy and momenta
* Many-body correlations contribute to explain the " g_{A}-problem"
* Studies on neutrinoless double beta decay indicate a less severe " g_{A}-problem" at moderate values of momentum transfer
* Two-body physics, correlations and two-body currents, play a crucial role in the explanation of electromagnetic responses of nuclei
* Microscopic Calculations of weak response indicate that two-body physics important in electroweak responses More by Alessandro Lovato on THUR @ 2:00 pm
* We are addressing how to retain two-body physics in approximated Microscopic calculations of responses in $A>12$ nuclei with the Short Time Approximation
* Benchmark with existing exact calculations by Lovato et al. is excellent
* All this work impacts on Fundamental Physics Quests! *

Outlook

Fundamental Physics with Electroweak Probes of Light Nuclei
 June 12 - July 13, 2018
 S. Bacca, R. J. Hill, S. Pastore, D. Phillips

Contacts
http://www.int.washington.edu/
saori.pastore@gmail.com
saori@lanl.gov

[^0]: Carlson and Schiavilla Rev.Mod.Phys.70(1998)743

