

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Scintillator FTBF Studies for CMS Endcap Backing Calorimeter

Jim Freeman

Jim Freeman, Don Lincoln, Paul Rubinov, (FNAL)

Sergey Uzunyan, Sasha Dychkant, Vishnu Zutshi (NIU)

Ping Tan (Rochester)

CMS BH Calorimeter

HGC calorimeter y-z view

Cross section of scintillator cassette

SIPM-on-Tile

SIPM-on-Tile Design Questions

- uniformity/light yield
- vs size of tile
- vs size of SIPM
- vs thickness of scintillator
- different scintillator materials
- different covering/reflective material

Example of SIPM-on-tile

Scintillator

- $-3 \times 3 \times 0.38$ cm
- SCSN81
- Dimpled
- Wrapped in foil
- Edge painted with BC-610

- $-1.3 \times 1.3 \text{ mm}$
- Hamamatsu
- Flush with face of dimple

Beam Test

- Scintillator tests for backing calorimeter for HGCAL
- Fermilab test beam
 - MTest
 - 120 GeV protons
 - ~1E5 protons/spill
 - Spot size (6 mm radius?)
 - Parasitic test. (June, July)

Large Backing Scint

52 Fermilab

Test Configuration

Configuration:

- 4 channel DRS4 [Essentially a digital oscilloscope].
- SIPM mounted on ORKA boards
- SIPM bias voltage (Keithley 2410)
- SIPM-on-tile aligned to beam in dark box
- 3mm × 3mm trigger counter fixed in the beam
- DRS4 triggered with the 3x3 mm counter
- X-Y stepping motor stage for position scanning

DRS4 Evaluation Board DAQ, FE electronics

- Front end ORKA single channel SIPM amplifier (Sergey Los, Dave Christian) 3GHz / 13x amplifier
- DRS4 Waveform digitizer
 - Up to 5 GS/s
 - 700 MHz amplifier input
 - Modified firmware (Paul Rubinov)
 deadtime (busy signal out)

- 1K events/spill
- Binary to root conversion program (Caltech, FNAL)
- Root files for analysis. Don Lincoln

Event-by-event pedestal subtraction. Sample tile

SIPM gain extraction. Measure SIPM gain run-by-run

Sample X scan 6x6 cm tile (~ 2K events/point. 120GeV proton)

Comment on ave pe: PE itself is not in doubt but to compare to other measurement need to correct SIPM PDE for overvoltage and temperature differences. Studies taken, analysis in progress.

☼ Fermilab

Some of the SIPM-on-tile samples tested. Analysis in progress

Scintillator	Thickness (mm)	Size (cm)	SIPM (mm)
SCSN81	3.8	3×3	1.3
SCSN81	3.8	4×4	1.3
SCSN81	3.8	6×6	1.3
EJ200	3	3×3	1.3
EJ260	3	3×3	1.3
SCSN81	3.8	3×3	1.3
SCSN81	3.8	3×3	2.0
SCSN81	7.6	3×3	1.3
NIU Inject Mold	3	3×3	1.3
LS (FNAL polysiloxane)	3.8	3×3	1.3
MgO UV paint coating	3.8	3×3	1.3

~20 configurations, ~ 20 runs/configuration, ~ 2K 120GeV p / run

