

The Accelerator Neutrino-Neutron Interaction Experiment (ANNIE)

Emrah Tiras

ON BEHALF OF ANNIE COLLABORATION

IOWA STATE UNIVERSITY

ALL EXPERIMENTERS' MEETING, FERMILAB JULY 24, 2017

The Current State of the Detector (Phase I)

ANNIE is located at SciBooNE Hall along the Booster Neutrino Beam (BNB) at Fermilab.

- on-axis neutrino flux
- Spectrum peaks around 0.7 GeV (range of interest for atmospheric neutrinos)
- Expect $14 \times 10^3 v_{\mu}$ of charged-current interactions per ton of water per year.

ANNIE Phase I

The main physics goal of Phase I is understanding neutron backgrounds. Potential background neutrons in ANNIE:

- Sky-shine neutrons from the beam dump
- Dirt neutrons from the rock

The background neutron flux was measured at different locations in the tank.

E. Tiras, Iowa State University

ANNIE Phase I

- Beam trigger
- Cosmic trigger (coincidence of 6 cosmic paddles)
- Calibration neutron source trigger
- LED calibration trigger (blue, green)

Calibration:

- ²⁵²Cf source on top of the tank: the trigger PMT detects prompt gamma from fission.
- Tank PMTs veto cosmic muons
- Two 3 in. PMTs monitor the NCV (optically isolated)

Data Taking Progress

- ANNIE was built by April 2016 and it has been taking data since May 2016.
- Currently taking cosmic and source (Cf-252) data. It will be turned off in two weeks.

Execution of Phase I

- ANNIE was built by April 2016 and it has been taking data since May 2016.
- Currently taking cosmic and source (Cf-252) data. It will be turned off in two weeks.

The NCV was moved to 8 positions, scanning the neutron rates as a function of distance from the beam and the top.

Preliminary Phase I Results

- We have detected neutron captures, both from a calibration source and from the beam.
- Preliminary estimates based on measurements below the surface indicate neutron backgrounds in less than 2% of spills.
- Final luminosity normalized estimates of beam induced background neutrons are coming soon.

• Backgrounds are acceptable and can be mitigated with <2 ft of buffer.

ANNIE Phase II (Summer 2018)

More details about the upgrade

- Complete the tank inner structure
- Add the LAPPD System
- Add Gadolinium
- Finish refurbishing the muon range detector (reinstall paddles)
- Expand standard photocathode coverage w/ more PMTs
- Expand electronics channel count

LAPPD Cassette

Small slots to insert the LAPPDs through

guides.

Conclusion

- Phase I: We built it and backgrounds are acceptable.
- LAPPDs are here testing them at ISU.
- Phase II planned for next year. LAPPDs and more PMTs will be added and making physics measurements.
- It was approved by PAC last week. We appreciate Fermilab's support.
- ANNIE will be the first experiment testing LAPPDs in Gd-loaded water.

Backup Slides

An event in ANNIE tank

muon

neutrons are produced

neutrons are captured and 8 MeV gammas are produced in several tens of microseconds.

ANNIE Moving Towards Phase II

LAPPDs (20 cm x 20 cm) are:

- novel technology for photodetection with gain of 10⁶
- based on microchannel plates
- with excellent timing (~ 50 psec for SPE) and spatial resolution (700 microns in both lateral dimensions)→ this will give us a significant improvement for vertex reconstruction.

ANNIE will host the first live test of this novel technology during Phase II.

Incom has now produced multiple LAPPD prototypes, quickly approaching the specifications needed by ANNIE:

Tile #9: fully sealed detector with an aluminum photocathode Tile #10: sealed detector with multi-alkali photocathode (~5 % QE) Tile #12: ~10% QE Tile #13: half the photocathode with >20% QE Tile #15: uniform photocathode >25% QE

LAPPD Characterization Tests at ISU

LAPPDs #9 and #12 were tested at ISU w/ PSEC electronics provided by UChicago

example single PE-pulses Tile#9

Multi-PE transit time spread (Tile #12)

Tile #9 gain distribution

Phase I \rightarrow Phase II

- Complete the tank inner structure
- Add the LAPPD System
- Add Gadolinium
- Finish refurbishing the muon range detector (reinstall paddles)
- Expand standard photocathode coverage w/ more PMTs
- Expand electronics channel count

LAPPD Cassette

Small slots to insert the LAPPDs through

guides.

Phase I \rightarrow Phase II

- Complete the tank inner structure
- Add the LAPPD System
- Add Gadolinium
- Finish refurbishing the muon range detector (reinstall paddles)
- Expand standard photocathode coverage w/ more PMTs
- Expand electronics channel count

MRD has missing 71 paddles – still working on it. Only the first two layers are powered during the Run I All 306 channels will be powered up.

Gadolinium-Sulfate Loading:

- UPW will be loaded with Gd at 0.2% concentration
- Requires extensive material testing.
- Water purity/Gd-compatibility

Jul/24/17

Phase I \rightarrow Phase II

- Complete the tank inner structure
- Add the LAPPD System
- Add Gadolinium
- Finish refurbishing the muon range detector (reinstall paddles)
- Expand standard photocathode coverage w/ more PMTs
- Expand electronics channel count

Acquired PMTs for ANNIE phase II

19 LUX PMTs

22 ETL (LBNE) PMTs

 Potentially buying 20 new HQE PMTs and looking other options to borrow from other experiments as well.

Phase II: Neutron Detection Efficiency

- Neutron detection efficiency as a function of the interaction position in X (the transverse direction) and Z (the beam direction)
- integrated between -1 and +1 meters in the vertical direction, Y.

Plots from V. Fischer

Phase II: Vertex Reconstruction and Fiducialisation

- LAPPDs show substantial improvement in precision for vertex reconstruction.
- LAPPDs help to understand the topology of the events.

Plots from A. Back and J. Wang