Resolution of Matching CRT Hits to Reconstructed Tracks

DRA Bi-Weekly (August 3, 2017)

Joseph Previdi

jprevidi@fnal.gov

Overview

- Two algorithms currently match Cosmic Ray Tagger (CRT) hits to reconstructed tracks caused by the same muon.
 - One matches pairs of CRT hits to reconstructed track (muon hits CRT on way in AND out)
 - Other matches each CRT hit to a single reconstructed track (one hit per track)
- Took interest (for now) in the first, since we can easily study resolution.
 - Draw straight line from one CRT hit to the other, giving "CRT predicted track"
 - Can see how close reconstructed track is to CRT prediction
 - Can't do this with single-hit method

Arbin Timilsina goes in-depth here (Method 1: combinatorial tracks): https://indico.fnal.gov/getFile.py/access?contribId=47&sessionId=7&resId=0&materialId=slides&c onfId=12345

Goals

- Looking at the resolution under different metrics can let us:
 - Test for recurring biases in reconstruction algorithms
 - Try to understand where these biases might come from
 - Find out where inefficiencies/impurities in matching come from
- Some advantages over efficiency/purity tests:
 - Gives more information:
 - How far off incorrect tracks are, and in which ways
 - How close correct tracks are (recurring discrepancies could be studied)
 - Arbitrary cutoffs can be set at any point given full histograms

Comparison Metrics

- For these metrics, treat both the reconstructed tracks and CRT predicted tracks like straight lines (for now).
- Compare those lines via:
 - Cosine of the angle between them (direction cosine)
 - Distance of closest approach in YZ plane
- Want to compare distance of closest approach in XZ plane as well, but...
 - X is drift direction, so reconstructed X position depends on timing (when particle enters TPC)
 - Currently set to spill time for all particles, so cosmics then end up with a pseudo-random X position
 - Fixable using time signature from each CRT hit; not yet implemented in this method
 - Would also like a single, overall metric: still TBD.

Difficulties:

- Space Charge Effect (SCE):
 - SCE is distortion of the electric field in the TPC due to buildup of slow positive ions
 - Protodune SCE distortions estimated to be as large as 20cm (Timilsina)
 - MCC9 contains simulations both with and without SCE
 - We compare CRT predicted tracks to reconstructed ones both with and without SCE
- Low Efficiency:
 - Even when simulating ~700 muons, only tens of muons will actually have two CRT hits (<10%).
 - Without SCE, ~80% of those get matched to a reconstructed track, while with SCE, ~50%.
 - Currently haven't run enough simulations to get cleanest possible data since yield is so low.
 - But we do have some!

Early Results: Direction Cosine Histograms Without SCE: With SCE:

Since most preferences in the algorithm are related to angle/slope, the angles are very small; all within 2° in this case.

Early Results: Distances of Closest Approach (YZ)

- CRT Resolution: 2.5cm (same as bin size on above histograms)
- Conclusions here more difficult to draw; more data needed

Questions?

Joseph Previdi (jprevidi@fnal.gov)