

CMS Run 2 Results

Joe Pastika on behalf of the CMS Collaboration

Introduction

- Introduction to CMS
- Higgs results
- SUSY results
- Dark matter searches
- Heavy resonance searches
- Standard model measurements
- Top results
- Heavy ion results
- Summary

671 collider data papers submitted as of 2017-10-28

http://cms-results.web.cern.ch/cms-results/public-results/publications/

Intro to CMS & Performance

Excellent data taking performance from CMS to match the excellent performance of the LHC!

T Higgs introduction

http://arxiv.org/abs/1706.09936

- Run 1 brought the discovery of the Higgs boson with 125 GeV mass
- Run 2 is bringing about more understanding
- (Above) 4-lepton mass distribution for the H to 4l search.

7 Higgs to ττ

http://arxiv.org/abs/1708.00373

- Search for $H \to \tau \tau$ using leptonic and hadronic decays
- The di-tau mass is reconstructed using a dedicated algorithm which takes into account the visible energy and \vec{p}_T^{miss}
- Split by lepton flavor and vector boson fusion tags
- First single experiment observation of $H \to \tau\tau$ decay with 5.9 σ (Run 1 + Run 2) significance

Boosted Higgs to bb

- Traditional $H \rightarrow bb$ search shows good agreement between SM and observations (3.3 σ) at 13 TeV
- Dedicated search for events where boosted Higgs decay products end up in a single fat-jet
- Boosted channel significance of 1.5σ

http://arxiv.org/abs/1709.07497 http://arxiv.org/abs/1709.05543

SUSY at the LHC

- Higgs discovery raises questions about $m_H \simeq 125 \text{ GeV}$
- $m_H^2 = m_{H,0}^2 + \delta m_H^2$
 - SM predicts δm_H^2 will be driven up to the UV cutoff of the theory
 - SUSY allows small δm_H^2
- Natural SUSY models
 - Choose sparticle masses (namely $\tilde{h}/\tilde{t}/\tilde{g}$) to keep finetuning small
 - Motivates "light" higgsino/stop/gluino searches at LHC

Closeness to Higgs

L. Hall. Searches for SUSY at the LHC, LBL Workshop, 19-21 Oct 2011

Transfer Stop searches

- Dedicated searches using top tagging
- Custom SUSY-specific top tagging algorithms

∏ Stop search results

Direct stop production

http://arxiv.org/abs/1707.03316

https://cds.cern.ch/record/2291019 (submitted to PRD)

Indirect stop production

gluinos

through §

Dark matter - Monojet

https://cds.cern.ch/record/2264698

- Dark matter well motivated without SUSY
- Simplest search is $p_T^{miss} + X$
- Monojet search looks at p_T^{miss} spectrum in association with a single high p_T jets or a highly boosted hadronicly decaying vector boson

Heavy resonances - Diphoton

http://arxiv.org/abs/1609.02507

- Search for diphoton events
- "Bump-hunt" in diphoton invariant mass
- Sensitive to scalar resonances and RS gravitons

- Caused some excitement in early Run 2 when a ~750 GeV excess was seen in both CMS and Atlas
- CMS saw a local significance of \sim 3.4 σ in 2012+2015 data
- Reduced $< 2\sigma$ in 16.2 fb⁻¹ (2015 + partial 2016 data)

Heavy resonances - Diphoton

 Limits are set on the presence of RS Gravitons between ~2 to 4.5
TeV depending on coupling parameters http://arxiv.org/abs/1609.02507

RS Gravitons

Heavy resonance W'

http://arxiv.org/abs/1708.08539

- Search for $W' \rightarrow tb$ where $t \rightarrow blv$
- Reconstruct M_{tb} from $ljj + \vec{p}_T^{miss}$
- Split by e/μ channel and by number of b-tagged jets used in M_{tb} calculation
- Set limits on left and right-handed W' models

Heavy resonance W'

http://arxiv.org/abs/1708.08539

- Search for $W' \rightarrow tb$ where $t \rightarrow blv$
- Reconstruct M_{tb} from $ljj + \vec{p}_T^{miss}$
- Split by e/μ channel and by number of b-tagged jets used in M_{tb} calculation
- Set limits on left and right-handed W' models

∏ SMP overview

SMP overview

Vector boson scattering

http://arxiv.org/abs/1609.02507

- First observation of EW production of same-sign WW production
- Low background channel, probes for new physics
- 2 same-sign lepton 2 jet final state
- $W^{\pm}W^{\pm}$ Signal found with 5.5 σ significance
- Signal consistent with SM expectations

Vector boson scattering

- First observation of EW production of samesign WW production
- 2 same-sign lepton 2 jet final state
- Results interpreted as $H^{\pm}H^{\pm} \rightarrow W^{\pm}W^{\pm}$ search

 W^{\dashv}

Vector boson fusion

Georgi-Machacek model

$7 \, t ar{t}$ cross-section measurements

Evidence for SM tttt production

https://cds.cern.ch/record/2284599 (submitted to EPJC)

- Search conducted in same-sign di-lepton (e/μ) and ≥ 3 lepton final states
- Cross-section measured to be 16.9 fb with a 1.6 σ significance
- This is consistent with SM prediction of ~12 fb

Heavy ion ttbar

http://arxiv.org/abs/1709.07411

- First observation of $t\bar{t}$ in p-Pb collisions
- Single lepton (e/μ) channel, top mas reconstructed adding 4 additional jets
- Measured cross-section of 45 ± 8 nb is consistent with predictions from perterbative QCD
- Excellent probe of high x region of nuclear gluon density

Summary

- CMS has produced a wide array of high quality physics results across many sub-fields
- The large dataset provided by the LHC has provided the data for many precision measurements, discovery of rate processes and expanded mass limits of exotic searches
- With the dataset already doubled between 2016 and 2017 and more data on the way in 2018 stay tuned for more exciting physics!

Backups

Dark matter - Monojet

https://cds.cern.ch/record/2264698

- Dark matter well motivated without SUSY
- Simplest search is $p_T^{miss} + X$
- Monojet search looks at p_T^{miss} spectrum in association with a single high p_T jets or a highly boosted hadronicly decaying vector boson

Heavy resonances - Dijet

https://cds.cern.ch/record/2256873

Low-mass search

High-mass search

- Search for dijet resonances
- Low-mass search performed within high-level trigger
- Traditional high-mass search performed with off-line objects