



# Solutions and Improvement for VH $\rightarrow \tau\tau$ Run 2 Analysis

Savannah Thais, Yale University
USLUA Lightning Round, 11/03/2017

# Analysis Introduction

#### **BASICS**

- Associated production (VH): W or Z radiates a Higgs
- The Higgs decays to 2 taus
- 4 analysis categories
- All final states have 3-4 objects:
  - ≥ 2 taus and 1-2 light leptons
- In ATLAS Sofware:
  - ➤ Taus are difficult to trigger on and reconstruct cleanly
  - Light lepton triggers and IDs are highly efficient





Thais **see the state of the sta** 

# Analysis Introduction

#### **BASICS**

- Associated production (VH): W or Z radiates a Higgs
- The Higgs decays to 2 taus
- 4 analysis categories
- All final states have 3-4 objects:
  - ≥ 2 taus and 1-2 light leptons
- In ATLAS Sofware:
  - ➤ Taus are difficult to trigger on and reconstruct cleanly
  - Light lepton triggers and IDs are highly efficient



#### **MOTIVATION**

- o  $H \rightarrow \tau\tau$  has a high branching fraction
- Object requirements on 3-4 objects
   → reduced multi-jet backgrounds
- o Increased luminosity → VH is a more viable production mode
- o Increased pileup  $\rightarrow$  more difficulty measuring other H  $\rightarrow \tau\tau$  production modes



Thais and the second of the



Very promising channel to observe fermionic Higgs decay!

# Analysis Procedure

Select Events

Estimate Backgrounds

Reconstruct Mass Spectrum Fit Mass Spectrum

Select appropriate events for each of our 4 analysis categories Calculate background contributions to selected event distributions (major source of uncertainty)

Construct the ditau mass spectrum accounting for missing mass from neutrinos Fit the di-tau mass spectrum, compare to SM predictions, obtain final results

Thais **see that the state of th** 

# Analysis Procedure

Select Events

Estimate Backgrounds

Reconstruct Mass Spectrum Fit Mass Spectrum

Select appropriate events for each of our 4 analysis categories Calculate background contributions to selected event distributions (major source of uncertainty) Construct the ditau mass spectrum accounting for missing mass from neutrinos Fit the di-tau mass spectrum, compare to SM predictions, obtain final results





Run 1 combined signal strength:  $\mu$ =2.3 ± 1.6

Thais Thais

#### **Event Selection**

All categories must have at least 3 identified leptons including at least 1 light lepton

#### $W \longrightarrow \mu \nu / e \nu, H \longrightarrow \tau_{lep} \tau_{had}$

- Exactly one isolated muon and electron
- Exactly one  $\tau_{had}$  passing medium BDT ID
- $p_T(\tau_{had}) > 25 \text{ GeV}$
- Same-charge e and  $\mu$ , opposite charge  $\tau_{had}$
- Events with b-tagged jets with p<sub>T</sub>>30 GeV are vetoed
- $|p_T(\tau_{had})| + |p_T(\mu)| + |p_T(e)| > 80 \text{ GeV}$
- $\Delta R(\tau_{had}, \tau_{lep}) < 3.2$

#### $W \rightarrow \mu \nu / e \nu, H \rightarrow \tau_{had} \tau_{had}$

- Exactly one isolated muon or electron
- Exactly two opposite charge  $\tau_{\rm had}$  passing medium BDT ID
- $p_T(\tau_{had})>20 \text{ GeV}$
- $|p_T(\tau_{had1})| + |p_T(\tau_{had2})| > 100 \text{ GeV}$
- m<sub>T</sub>(*l*,E<sub>T</sub><sup>miss</sup>)>20 GeV
- 0.8<  $\Delta R(\tau_{had1}, \tau_{had2})$ < 2.8
- Events with b-tagged jets with p<sub>T</sub>>30 GeV are vetoed

#### $Z \rightarrow \mu \mu / ee, H \rightarrow \tau_{lep} \tau_{had}$

- Exactly three electrons or muons
- One opposite-charge and same-flavor lepton pair with invariant mass 80<m<sub>II</sub><100 GeV
- Exactly one  $\tau_{\rm had}$  passing medium BDT ID with opposite charge to the lepton assigned to the Higgs
- $p_T(\tau_{had})$ >20 GeV
- $|p_T(\tau_{had})| + |p_T(\tau_{lep})| > 60 \text{ GeV}$

#### $Z \rightarrow \mu\mu/ee, H \rightarrow \tau_{had}\tau_{had}$

- Exactly two electrons or muons of opposite charge
- Exactly two opposite charge  $\tau_{\rm had}$  passing medium BDT ID
- $p_T(\tau_{had})>20 \text{ GeV}$
- 60<m<sub>II</sub><120 GeV
- $|p_T(\tau_{had1})| + |p_T(\tau_{had2})| > 88 \text{ GeV}$

Thais to the second of the sec

# Event Selection Improvements

- Could improve event selection efficiency with Machine Learning
  - Either an individual algorithm for each analysis category
  - > Or algorithm with multiple classification outputs
- Can train algorithm using same variables from Run 1 event selection
  - $\triangleright$  Particle  $p_T$ , triggers, number of leptons, lepton charge, lepton quality
  - Or additional variables that were not appropriate for cuts

Thais (

# Event Selection Improvements

- Could improve event selection efficiency with Machine Learning

  - > Or algorithm with multiple classification outputs
- Can train algorithm using same variables from Run 1 event selection
  - Particle p<sub>T</sub>, triggers, number of leptons, lepton charge, lepton quality
  - Or additional variables that were not appropriate for cuts





Thais Control of the Control of the

# Event Selection Improvements

- Could improve event selection efficiency with Machine Learning

  - > Or algorithm with multiple classification outputs
- Can train algorithm using same variables from Run 1 event selection
  - Particle p<sub>T</sub>, triggers, number of leptons, lepton charge, lepton quality
  - Or additional variables that were not appropriate for cuts

#### Signal Efficiency vs Background Efficiency



Previous study for  $H \rightarrow ZZ_d$  event selection using deep neural network

Improving background rejection would reduce dependency on fake rate measurements!

Thais Control of the Control of the

# **Background Estimation**

This analysis has two types of backgrounds:

- 1. Irreducible backgrounds from diboson,  $Z \rightarrow \tau \tau$ , and ttbar (contributions measured in MC)
- 2. Backgrounds from non-prompt leptons/taus and objects faking leptons/taus (contributions measured in data)

Thais and the second of the

# **Background Estimation**

Backgrounds from non-prompt leptons/taus and objects faking leptons/taus Calculate this background contribution using fake rate measured in data

- 1. Select a region with kinematics similar to Signal Region (SR) but enriched in objects failing ID criteria (anti-selected objects)
- 2. Measure the frequency at which object candidates in this region pass the object selection criteria (fake rate, r)
- 3. Use r calculate the scaling factor between events in fake enriched region to events in SR (fake factor, f=r/(1-r))
- 4. Apply f as an additional bin weighting in SR to account for fake/non-prompt background contribution to final results

# **Background Estimation**

Backgrounds from non-prompt leptons/taus and objects faking leptons/taus Calculate this background contribution using fake rate measured in data

- 1. Select a region with kinematics similar to Signal Region (SR) but enriched in objects failing ID criteria (anti-selected objects)
- 2. Measure the frequency at which object candidates in this region pass the object selection criteria (fake rate, r)
- 3. Use r calculate the scaling factor between events in fake enriched region to events in SR (fake factor, f=r/(1-r))
- 4. Apply f as an additional bin weighting in SR to account for fake/non-prompt background contribution to final results



Thais Thais

# **Background Estimation Improvements**

#### **Taus**

- Large systematic uncertainty in Run 1
- In part due to unknown quark/gluon initiated fraction
- Can improve by analyzing all tau types together using <u>PanTau</u>

### **Background Estimation Improvements**

#### **Taus**

- Large systematic uncertainty in Run 1
- Mainly due to unknown quark/gluon initiated fraction
- Can improve by analyzing all tau types together using <u>PanTau</u>

#### **Electrons**

- $\circ$  Only used in W, $\tau_{\text{lep}}$   $\tau_{\text{had}}$  channel in Run 1
- ATLAS has new data-driven electron ID which reduces non-prompt selection rate
- Further improved image based ID under construction
- More ID operating points → more options for selection criteria

#### Background Estimation Improvements

#### **Taus**

- Large systematic uncertainty in Run 1
- In part due to unknown quark/gluon initiated fraction
- Can improve by analyzing all tau types together using <u>PanTau</u>

#### **Electrons**

- o Only used in  $W, \tau_{lep}$  $\tau_{had}$  channel in Run 1
- ATLAS has new data-driven electron ID which reduces nonprompt selection rate
- Further improved image based ID under construction
- More ID operating points more
   options for
   selection criteria

#### Muons

- Fake rate was unusable in Run 1 due to trigger/ID inconsistencies
- Now using isolation as selection criteria rather than ID

8

Thais \_\_\_\_\_

### Mass Reconstruction

- When constructing final di-tau mass spectrum must account for missing mass from neutrinos
- Done separately for ZH (neutrinos only from tau decays) and WH (additional neutrino from W decay)
  - > Technique for WH only gives lower bound on di-tau mass
- This procedure is imprecise 

  introduces additional uncertainty





Thais Control of the Control of the

# Mass Reconstruction Improvements

- Can use Boosted Decision Trees (BDTs) to improve the missing mass calculation:
  - $\triangleright$  Train BDT to produce mass correction scale factor using similar input variables as current techniques ( $p_T$ , visible mass, angular separation)
  - Can be binned based on event kinematics → more precise



## Mass Reconstruction Improvements

- Can use Boosted Decision Trees (BDTs) to improve the missing mass calculation:
  - $\triangleright$  Train BDT to produce mass correction scale factor using similar input variables as current techniques ( $p_T$ , visible mass, angular separation)
  - Can be binned based on event kinematics → more precise



Same procedure has been successful in other applications:

- Electron energy re-calibration in E/Gamma
- $\mapsto$  H  $\rightarrow \tau \tau$  analysis (<u>BRTs</u>)

○ VH  $\rightarrow \tau\tau$  is a promising channel for measuring fermionic Higgs decay in ATLAS in Run 2

- $\circ$  VH  $\rightarrow \tau\tau$  is a promising channel for measuring fermionic Higgs decay in ATLAS in Run 2
- Improvements planned for main analysis steps:
  - Event selection: use ML classifier
  - Background estimation: improved particle ID and fake object criteria
  - Mass reconstruction: Use BDTs to calculate mass correction factor

- $\circ$  VH  $\rightarrow \tau\tau$  is a promising channel for measuring fermionic Higgs decay in ATLAS in Run 2
- Improvements planned for main analysis steps:
  - Event selection: use ML classifier
  - Background estimation: improved particle ID and fake object criteria
  - Mass reconstruction: Use BDTs to calculate mass correction factor
- Even more improvements are possible: improving uncertainty calculations, mass spectrum fitting, inclusion of additional analysis categories, and more....

- $\circ$  VH  $\to \tau\tau$  is a promising channel for measuring fermionic Higgs decay in ATLAS in Run 2
- Improvements planned for main analysis steps:
  - Event selection: use ML classifier
  - Background estimation: improved particle ID and fake object criteria
  - Mass reconstruction: Use BDTs to calculate mass correction factor
- Even more improvements are possible: improving uncertainty calculations, mass spectrum fitting, inclusion of additional analysis categories, and more....
- Exciting results to come!

# Thanks! Any questions?

Savannah Thais savannah.thais@yale.edu