Evidence for the Higgs boson decay to a bottom quark-antiquark pair

Sean-Jiun Wang November 3, 2017

Outline

- Motivation
- Strategy
- Results
- Conclusions

Motivation: Why $H \rightarrow b\bar{b}$?

- With a mass of 125 GeV, the standard model Higgs boson decays to bb about 58% of the time.
- The H→bb̄ decay provides an important opportunity to observe another coupling of Higgs to fermions^[1] and measure its coupling to bottom quarks.

Motivation: Why VH→bb̄?

Multijet backgrounds have cross sections 10⁷ times larger than gluon fusion.

Best sensitivity to $H \rightarrow b\bar{b}$ among associated production searches.

Motivation: Why VH \rightarrow b \bar{b} ?

Unlike the H $\rightarrow \gamma\gamma$ and H $\rightarrow \tau^+\tau^-$ decays, H $\rightarrow b\bar{b}$ has not been observed yet.

	Significance Expected	Significance Observed	
CDF + D0 ^[1]	1.9	2.8	
ATLAS, Run 1 ^[2]	2.6	1.4	
CMS, Run 1 ^[3]	2.1	2.1	
ATLAS + CMS, Run 1 ^[4]	3.7	2.6	
ATLAS, Run 2 ^[5]	3.0	3.5	

[1] <u>dx.doi.org/10.1103/PhysRevLett.109.071804</u>

- [2] <u>dx.doi.org/10.1007/JHEP01(2015)069</u>
- [3] <u>dx.doi.org/10.1103/PhysRevD.89.012003</u>
- [4] <u>dx.doi.org/10.1007/JHEP08(2016)045</u>
- [5] <u>arxiv.org/abs/1708.03299</u>

	Variable	0-lepton	1-lepton	2-lepton
	$p_{\rm T}({\rm V})$	>170	>100	[50, 150], >150
Vector Boson	$M(\ell\ell)$	—	—	[75, 105]
vector boson	p_{T}^ℓ	—	(> 25, > 30)	>20
	$p_{\mathrm{T}}(\mathbf{j}_1)$	>60	>25	>20
	$p_{\mathrm{T}}(\mathbf{j}_2)$	>35	>25	>20
	$p_{\mathrm{T}}(\mathrm{j}\mathrm{j})$	>120	>100	—
Higgs Boson	M(jj)	[60, 160]	[90, 150]	[90, 150]
11665 205011	$\Delta \phi(V, jj)$	>2.0	>2.5	>2.5
	CMVA _{max}	>CMVA _T	>CMVA _T	>CMVA _L
	CMVA _{min}	>CMVA _L	>CMVA _L	>CMVA _L
	N _{aj}	<2	<2	—
	$N_{\mathrm{a}\ell}$	=0	=0	—
Final State	$p_{\rm T}^{\rm miss}$	>170		—
I mai State	$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, {\rm j})$	>0.5	—	—
Topology	$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}(\mathrm{trk}))$	< 0.5	—	—
Topology	$\Delta \phi(ec{p}_{ ext{T}}^{ ext{miss}},\ell)$	_	<2.0	—
	Lepton isolation		< 0.06	(< 0.25, < 0.15)
	Event BDT	> -0.8	>0.3	> -0.8

- Enriched in specific background processes.
- Validate agreement between simulation and data.
- Distinguished by their CMVA_{min} distribution.

- Boosted decision trees (BDT) used to classify events as signal or background.
- Channel-specific, trained using their most discriminating features.

Maximum likelihood fit performed over all channels, using as input

- The BDT discriminants of the signal regions for enhanced separation of signal from background.
- The CMVA_{min} distributions of the control regions to normalize background yields.

Results

Observed significance of 3.3σ for Run 2 alone, 3.8σ when combined with Run 1! [1]

Data used	Significance	Significance	Signal strength
	expected	observed	observed
Run 1 [†]	2.5	2.1	$0.89\substack{+0.44\\-0.42}$
Run 2 [‡]	2.8	3.3	$1.19\substack{+0.40 \\ -0.38}$
Combined	3.8	3.8	$1.06\substack{+0.31 \\ -0.29}$

[1] <u>arxiv.org/abs/1709.07497</u>

+ 5.1 fb⁻¹ (7 TeV) + 18.9 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV)

Conclusions

- CMS has found evidence for $H \rightarrow b\bar{b}$ in VH processes.
- Still more to pursue!
 - As data continues to pour in, look for $\ge 5\sigma$ evidence for VH $\rightarrow b\bar{b}$.
 - Eventually leading to a precise measurement of the Higgs coupling to bottom quarks.

Backup Slides

BDT Training Features

Iteratively chosen from a pool of discriminative kinematical features.

Variable	Description	Channels
M(jj)	dijet invariant mass	All
$p_{\mathrm{T}}(\mathrm{j}\mathrm{j})$	dijet transverse momentum	All
$p_{\rm T}({ m j}_1)$, $p_{\rm T}({ m j}_2)$	transverse momentum of each jet	0- and 2-lepton
$\Delta R(jj)$	distance in $\eta - \phi$ between jets	2-lepton
$\Delta \eta$ (jj)	difference in η between jets	0- and 2-lepton
$\Delta \phi(jj)$	azimuthal angle between jets	0-lepton
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum	All
$\Delta \phi(V, jj)$	azimuthal angle between vector boson and dijet directions	All
$p_{\rm T}(\rm jj) / p_{\rm T}(\rm V)$	$p_{\rm T}$ ratio between dijet and vector boson	2-lepton
$M(\ell\ell)$	reconstructed Z boson mass	2-lepton
CMVA _{max}	value of CMVA discriminant for the jet	0- and 2-lepton
	with highest CMVA value	
CMVA _{min}	value of CMVA discriminant for the jet	All
	with second highest CMVA value	
CMVA _{add}	value of CMVA for the additional jet	0-lepton
	with highest CMVA value	
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum	1- and 2-lepton
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{j})$	azimuthal angle between $\vec{p}_{T}^{\text{miss}}$ and closest jet ($p_{T} > 30 \text{GeV}$)	0-lepton
$\Delta \phi(ec{p}_{ ext{T}}^{ ext{miss}},\!\ell)$	azimuthal angle between $ec{p}_{\mathrm{T}}^{\mathrm{miss}}$ and lepton	1-lepton
m_{T}	mass of lepton $\vec{p}_{\rm T}$ + $\vec{p}_{\rm T}^{\rm miss}$	1-lepton
$m_{\rm top}$	reconstructed top quark mass	1-lepton
N_{aj}	number of additional jets	1- and 2-lepton
$p_{\rm T}({\rm add})$	transverse momentum of leading additional jet	0-lepton
SA5	number of soft-track jets with $p_{\rm T} > 5 {\rm GeV}$	All

Effects of Systematics

		Individual contribution	Effect of removal to
Source	Туре	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors (tt, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties	norm.	4.7	1.1
(single-top, VV)			
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1