Neutral pion and η meson production in ALICE in proton-proton collisions at $\sqrt{s} = 8$ TeV

Nicolas Schmidt, $\mathsf{ORNL}/\mathsf{IKF}$ on behalf of the ALICE Collaboration

November 3, 2017

2017 US LHC Users Association Meeting

Nicolas Schmidt (ORNL/IKF)

 π^0 and η in pp, $\sqrt{s}=$ 8 TeV

ALICE at the LHC

A Large Ion Collider Experiment (ALICE)

- Detector divided into central barred and forward muon spectrometer
- Red solenoid magnet from L3 (LEP) experiment generates B = 0.5 T

Detector systems used:

- V0/T0 detectors: MB trigger + luminometers
- ► ITS/TPC: excellent tracking + PID
- EMCal/PHOS: electromagnetic calorimeters \rightarrow Triggering capabilities to extend high $p_{\rm T}$ reach
- \rightarrow Photon reconstruction possible via three independent methods

 \rightarrow Measurement of neutral mesons via photonic decay: $\pi^{0}(\eta) \rightarrow \gamma \gamma$

Photon reconstruction in ALICE

The Photon Conversion Method (PCM)

- Charged particle track combination with large impact parameter small DCA → V⁰(γ) candidate
- Large combinatorial Background, usage of cuts in analysis to primarily select photon candidates from V⁰ sample
 - General criteria (charge, no kinks, ...)
 - PID / electron selection
 - Armenteros-Podolanski
 - Kalman-Filter
 - Cosine of pointing angle
 - <u>۱</u>...
 - \rightarrow High purities (> 99% in pp)
- $\blacktriangleright \ |\eta| <$ 0.9, 0 $< \phi < 2\pi$
- \blacktriangleright Excellent resolution, but $P_{conv} \sim 8.5\%$ \rightarrow small reconstruction efficiency

Nicolas Schmidt (ORNL/IKF)

Photon reconstruction in ALICE

The Electromagnetic Calorimeter (EMCal)

- \blacktriangleright $|\eta| <$ 0.67, $\Delta \phi = 100^{\circ}$
- Shashlik calorimeter (lead/scintillator)
- Cell dimensions $\Delta\eta \times \Delta\phi = 0.0143 \times 0.0143$

The Photon Spectrometer (PHOS)

- $\blacktriangleright \ |\eta| <$ 0.13, $\Delta \phi =$ 60 $^{\circ} \rightarrow$ smallest acceptance
- \blacktriangleright Lead tungstate crystals \rightarrow very good resolution
- Cell dimensions $\Delta\eta imes \Delta\phi = 0.004 imes 0.004$

 \diamond Cells with deposited energy are grouped in clusters \rightarrow photon candidates, example selection criteria:

- $\blacktriangleright\,$ Min. energy/ N_{cells} per cluster / Shower shape
- Charged particle veto
- Opening angle

► ...

 \diamond Trigger capabilities \rightarrow select events with energy deposited above a threshold

Meson reconstruction

- ► Calculation of invariant mass of two photon candidates: $M_{\gamma\gamma} = \sqrt{2E_{\gamma\gamma}E_{\gamma\gamma}(1 - \cos\theta_{\gamma\gamma\gamma\gamma})}$
- Event mixing for uncorrelated background
- ► Fit with exponential + Gaussian + linear → mass position, width
 - \rightarrow bin counting to obtain raw yields
- Combination of two photons from PCM, PHOS or EMCal during reconstruction
 + "hybrid" methods
 → PCM + calorimeter (PCM-EMC)

 \rightarrow combines advantages from both methods

Meson reconstruction

► Calculation of invariant mass of two photon candidates: $M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})}$

Event mixing for uncorrelated background

- ► Fit with exponential + Gaussian + linear → mass position, width
 - \rightarrow bin counting to obtain raw yields
- Combination of two photons from PCM, PHOS or EMCal during reconstruction
 "hybrid" methods
 DCM + relationstruction (DCM EMC)
 - \rightarrow PCM + calorimeter (PCM-EMC)

 \rightarrow combines advantages from both methods

Results - π^0 and η in pp, $\sqrt{s} = 8$ TeV

Published results: arXiv:1708.08745

- Combination of 4 methods with 4 different triggers
 - \rightarrow high momentum reach for π^0 and η
 - PCM, EMCal, PCM-EMCal, PHOS (π^0)
 - MB + Calorimeter triggers: \rightarrow EMCal (\sim 2 and \sim 8 GeV) and PHOS (\sim 4 GeV)
- ► Precise reference data for LHC Run 2 p-Pb @ 8 TeV; total uncertainties (at ~ 3 GeV/c): $\rightarrow \sim 5\%$ for $\pi^0 \rightarrow \sim 10\%$ for η

Results - π^0 and η in pp, $\sqrt{s} = 8$ TeV

- Comparison of TCM (Tsallis) fit of data to:
 - PYTHIA8.2 Monash2013 + Tune4C
 - pQCD NLO calculations (FF:DSS14 /AESSS)
- Observation of $m_{\rm T}$ scaling violation with significance of 6.2σ below 3.5 GeV/c
- Universality of η/π^0 ratio

Theory, Data TCM fit

 Data ______ norm, unc. 2.6% PYTHIA 8.2. Monash 2013

PYTHIA 8.2. Tune 4C NLO, PDF:MSTW08 - FF:DSS14

 $0.5p_{-} < \mu < 2p_{-}$

pp. √s = 8 TeV

ALICE $\pi^0 \rightarrow \gamma \gamma$

Summary and Outlook

- ► ALICE neutral meson measurements in pp collisions at $\sqrt{s} = 8$ TeV → publication August 2017: arXiv:1708.08745
- ▶ Incorporation of minimum bias and triggered data for wide p_{T} reach
- Interesting future possibilities:
 - Comparison to pPb collisions @ 8 TeV
 - Application of spectra for direct photon measurements