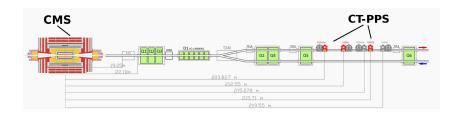

Photon Photon Physics in CT-PPS

Justin Williams
On behalf of the CMS and TOTEM Collaborations

Justin Williams USLUA 2017 1 / 11

Overview

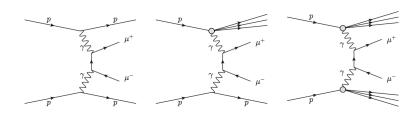


- ullet LHC can be used as a $\gamma\gamma$ collider
- CT-PPS provides an opportunity for new searches and measurements
- Possibility of a very strong background suppression using intact protons
- Discussion of
 - 1. CT-PPS
 - 2 Measurements
 - 3. Anomalous Couplings

Justin Williams USLUA 2017 2 / 11

CMS-TOTEM Precision Proton Spectrometer

What is CT-PPS?

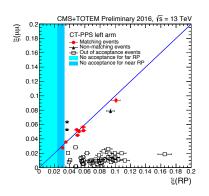

- Joint CMS and TOTEM project¹
- LHC magnets bend scattered protons outside of the beam envelope
- Intact protons are detected a few mm from the beamline
- ullet Detect protons at about \pm 200 m from IP5
- Roman Pot detectors measure ξ of protons
- Collected 15 fb⁻¹ of data in 2016

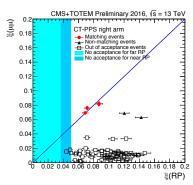
Justin Williams USLUA 2017 3 / 11

¹https://cds.cern.ch/record/1753795

Measurements

Dimuon Analysis in CT-PPS

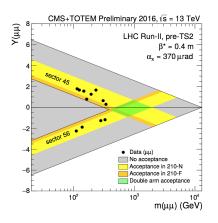



- CMS TOTEM preliminary results²
- It is with regular optics and pile up conditions
- First measurement of the process at high mass with intact protons
- Proof that the alignment, optics, and analysis are working

²CMS-PAS-PPS-17-001; TOTEM-NOTE-2017-003

Justin Williams USLUA 2017 4 / 11

Dimuon Analysis in CT-PPS

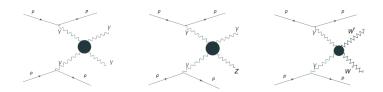


- 17 events have $\xi(\mu\mu)$ consistent with RP acceptance³
- 12 of these have $\xi(\mu\mu)$ that matches $\xi(RP)$ (red points)
- Background of 1.47 ± 0.06 (stat.) ±0.52 (syst.)

³CMS-PAS-PPS-17-001; TOTEM-NOTE-2017-003

Justin Williams USLUA 2017 5 / 11

Dimuon Analysis in CT-PPS



- Dimuon invariant mass and rapidity within expected range of acceptance
- Highest mass event 342 GeV
- Shows that alignment, proton tagging, trigger, etc. are understood and working

Justin Williams USLUA 2017 6 / 11

Anomalous Coupling Search

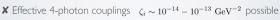
Anomalous Quartic Coupling

- ullet Photon emission o Photon fusion o Intact outgoing protons
- This is an exclusive process
- ullet We will focus on $\gamma\gamma o \gamma\gamma$

Justin Williams USLUA 2017 7 / 11

Motivations

- BSM Physics by studying electroweak symmetry breaking
- Predicted by Composite Higgs and Extra-Dimensional models
- · Couplings can be probed independently of models
- Application: Polarizable Dark Particle⁴


* Warped Extra Dimensions solve hierarchy problem of SM

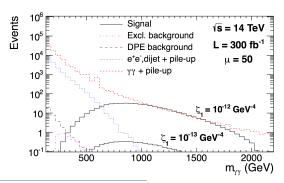
✗ 5th dimension bounded by two branes

✗ SM on the visible (or TeV) brane

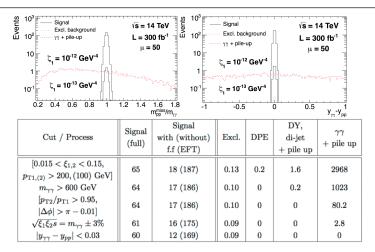
✗ The Kaluza Klein modes of the graviton couple with TeV strength

$$\mathcal{L}^{\gamma\gamma h} = \mathbf{f}^{-2} \ h_{\mu\nu}^{\rm KK} \ (\frac{1}{4} \eta_{\mu\nu} F_{\rho\lambda}^2 - F_{\mu\rho} F_{\rho\nu})$$
$$f \sim {\rm TeV} \qquad m_{\rm KK} \sim {\rm few \ TeV}$$

Planck brane


X The radion can produce similar effective couplings

Justin Williams USLUA 2017 8 / 11


Backgrounds

- Requesting two protons identified in forward detectors + two converted photons in central detector
- All backgrounds considered (Double Pomeron Exchange diphoton production, $H \rightarrow \gamma \gamma$, exclusive $\gamma \gamma$ production, dilepton + dijet misidentification, PU, Drell-Yan, ...)⁵
- Pile up is the main source of background

⁵ JHEP 02, 165 (2015)

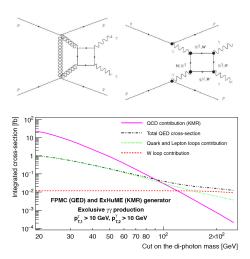
Dealing With Pile Up

- \bullet All values corresponding to 300 fb $^{-1}$
- No background after selection cuts without timing information
- Proton tagging is vital for exclusivity cuts

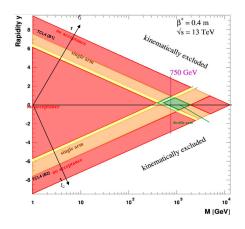
Justin Williams USLUA 2017 10 / 11

Summary

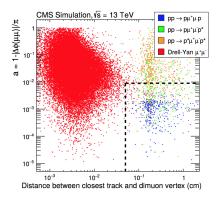
Summary


- With its 2016 operation, CT-PPS has proven for the first time the feasibility of operating a near-beam proton spectrometer at a high luminosity hadron collider on a regular basis
- ullet First evidence of $\gamma\gamma o \mu\mu$ with single proton tag
- CT-PPS allows us to probe BSM diphoton production in a model independent way
- Any observed anomalous coupling event is signal
- ullet CT-PPS has $\sim 15~{
 m fb}^{-1}$ data and is currently acquiring more

Justin Williams USLUA 2017 11 / 11

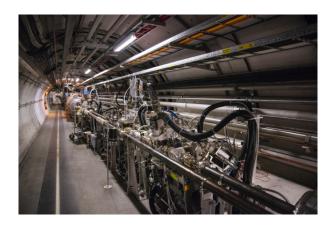

Backup Slides - Standard Model $\gamma\gamma$ Exclusive Production

- ullet QED process dominates at high m $_{\gamma\gamma}$
- · Cross section is well known
- \bullet W boson loop is the most significant at high ${\rm m}_{\gamma\gamma}$

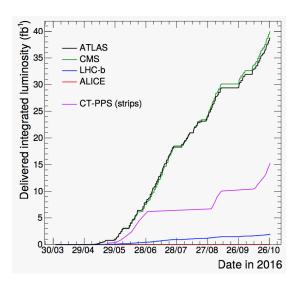


Proton Acceptance

- Roman Pots measures fractional momentum loss (ξ) of protons
- Acceptance for both protons
 - Mid rapidity
 - $\bullet \ \ 350 \ \text{GeV} < m_{pp} < 2000 \ \text{GeV}$
- Acceptance for single proton
 - Forward Rapidity
 - Lower masses



Event Selection



- Request pair of opposite sign muons with
 - $\bullet \ pT > 50 \ GeV$
- Selection based on the cleanliness of the dimuon vertex

Backup slides - CTPPS

Backup slides - Data

References I

- Search for new physics in high mass diphoton events in proton-proton collisions at 13TeV , Tech. Rep. CMSPAS-EXO-15-004 (CERN, Geneva, 2015).
- S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon, and M. Saimpert, JHEP 02, 165 (2015), arXiv:1411.6629 [hep-ph].
- S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, and M. Saimpert, Phys. Rev. D89, 114004 (2014), arXiv:1312.5153 [hep-ph].
- 4. M. Boonekamp, R. Peschanski, and C. Royon Phys. Rev. Lett. 87, 251806
- 5. E. Chapon, C. Royon, and O. Kepka, Anomalous Quartic $WW\gamma\gamma$, $ZZ\gamma\gamma$, and Trilinear $WW\gamma$, couplings in two-photon processes at High Luminosity at the LHC, Phys. Rev. D 81, 074003 (2010).