

ALICE Recent Highlights (a selection)

Leticia Cunqueiro Oak Ridge National Laboratory

2017 US LHC Users Association Meeting, Fermilab

Fundamental question:

How do collective phenomena and macroscropic properties of matter arise from the elementary interactions of a non-abelian quantum field theory?

Opportunities	Tools	Status
Constraining equilibrium properties of QCD matter (eos, $~~\eta/s~, \xi~, artheta_{\pi} \ldots$	Flow and fluctuation measurements in AA	advanced
Measuring medium properties with hard auto-generated probes (\hat{q} , \hat{e} , T),	Quarkonia, R _{AA} 's , photons	in progress
Accessing microscropic structure of QCD matter in AA	Jet substructure, heavy flavor transport	in reach
Controlling initial conditions	pA (light AA) runs, npdf global fits, small-x	in reach
Testing hydrodynamization and thermalization	Combined jet and flow analyses	strategy t.b.d.
Understanding "heavy-ion like behavior" in small systems (pp, pA)	Flow, hadrochemistry, jets	recent surprises

Slide stolen from Urs Wiedemann, Workshop on the physics of HL-LHC

Fundamental question:

How do collective phenomena and macroscropic properties of matter arise from the elementary interactions of a non-abelian quantum field theory?

Opportunities	Tools	Status
Constraining equilibrium properties of QCD matter (eos, $\ \eta/s,\xi, atural$	Flow and fluctuation measurements in AA	advanced
Measuring medium properties with hard auto-generated probes (\hat{q} , \hat{e} , T),	h hard Quarkonia, R _{AA} 's , '), photons	
Accessing microscropic structure of QCD matter in AA	Jet substructure, heavy flavor transport	in reach
Controlling initial conditions	pA (light AA) runs, npdf global fits, small-x	in reach
Testing hydrodynamization and thermalization	Combined jet and flow analyses	strategy t.b.d.
Understanding "heavy-ion like behavior" in small systems (pp, pA)	Flow, hadrochemistry, jets	recent surprises

Slide stolen from Urs Wiedemann, Workshop on the physics of HL-LHC

Jets and substructure

Jet Substructure

Capture the dynamics of the jet shower, characterize bulk of medium modifications to the shower

Several fundamental physics points to investigate:

-Identify possible change of the jet substructure due to the rare Moliere scatterings off quark gluon degrees of freedom in the medium or hunting for the quasi-particle structure of hot QCD

-Verify the effect of color coherence in medium or how the jet energy loss depends on the jet substructure

-Role of flavour hierarchy in medium

Jet shapes: generalized angularities

Diagram from Thaler et al

Exploring systematically the phase space of jet shapes

Jet shapes: generalized angularities

Jet shapes: generalized angularities in Pb-Pb

Picture qualitatively consistent with collimation of the jet core

The parton shower seems to be harder and narrower than the pp reference

Small effects in the jet mass

Mass ~ $p_T \theta^2$ while $g \sim p_T \theta$, both are measurements of jet broadening, but note that different *R* are considered (here *R* = 0.4 while *g* measurement is *R* = 0.2)

LeSub

 $\text{LeSub}=p_T^{lead,\text{track}}-p_T^{\text{sublead,track}}$

LeSub is not IRC safe but it has good properties like background invariance

LeSub in Pb-Pb shows no deviations from the vacuum reference, indicating that the "hardish" part of the jet remains unmodified 9

Jet shapes: generalized angularities in Pb-Pb

Picture qualitatively consistent with collimation of the jet core

Pb-Pb results in agreement with vacuum quark templates

Multiple effects contributing to the modification of the shape: medium response

R. Kunnawalkam, K.Zapp, JHEP1707 (2017) 141

Small effects in the shapes can be a compound effect of narrowing and re-population with jet-correlated background (medium response), as modelled by JEWEL

Jet Substructure using clustering history

Move backwards through the clustering history grooming away branches according to a prescription.

Aim: Remove/signal out parts of the shower in a controlled way

Access parts of the shower where the theory is most reliable

Map of splittings

G.Salam, Jet Substructure Theory workshop https://gitlab.cern.ch/gsalam/2017-lund-from-MC

$$d^2P = 2rac{lpha_s(k_\perp)C_R}{\pi} dln(z heta) dln(rac{1}{ heta})$$

Map of splittings

K Tywoniuk et al, Jet substructure theory workshop

Different scales at work, interesting triangular region:

- -splitting produced in medium -> large $k_T{}^2$ so that $\tau_f < L < \tau_{dec}$
- -coherent splitting: θ> θ_c~log(vqhatL³)

-N=1 -> Moliere scattering off partonic degrees of freedom ~ $1/k_T^4$

In ALICE, acceptance $\boldsymbol{\Theta} < \boldsymbol{\Theta}_{C}$

W jets QCD jets

ΔR and Nsubjettiness

 ΔR and τ_2/τ_1 are calculated relative to the two antenna axes.

- $\Delta R \rightarrow \eta \varphi$ distance between axes.
- τ_2/τ_1 -> measures the two prongness of the jet.

-The Nsubjettiness, τ_N , jet shape (where N can be any positive integer) is a measure of how N pronged a jet's substructure is.

-Initially developed to tag jets from Higgs decays such as Higgs -> W⁺W⁻.

$$\tau_{N} = \frac{\sum_{i=1}^{N} p_{T,i} Min(\Delta R_{i,1}, \Delta R_{i,2}, ..., \Delta R_{i,N})}{R_{0} \sum_{i=1}^{N} p_{T,i}}$$

 $\Delta R_{ij} \rightarrow \eta - \varphi \text{ distance}$ between track i and subjet j $p_{T,i} \rightarrow p_T \text{ of i}^{\text{th}}$ jet constituent R_0 Jet resolution parameter

- $\tau_N \rightarrow 0$ Jet has *N* or fewer well defined cores
- $\tau_N \rightarrow 1$ Jet has at least N+1 cores
- $\tau_N/\tau_{N-1} \rightarrow 0$ Jet has N cores
- $\tau_2/\tau_1 \rightarrow 0$ Jet is 2 pronged

[J.Thaler et al, JHEP 1103:015, 2011]

Comparison of Embedded PYTHIA and Raw Inclusive Pb-Pb Data

effectively grooming with k_T declustering strategy

- Differences between the two distributions would point to quenching effects small room for modifications.
- If jets are decohered, we expect to see a suppression of rate of jets at large ΔR
- Large ΔR dominated by fake subleading subjets

Fully Corrected Recoil Nsubjetiness in Pb-Pb

effectively grooming with $k_{\rm T}$ declustering strategy

If there is a hard medium-induced splitting, can we detect it as an extra hard core in the jet substructure?

First attempt: study possible modification of the N-prongness measured with N-Subjettiness.

Momentum imblance zg

$$p(z_g) \approx \frac{2\frac{z_g}{1-z_g} + 2\frac{1-z_g}{z_g} + 1}{\frac{3}{2}(2z_{cut}-1) + 2\log\frac{1-z_{cut}}{z_{cut}}}$$

In pp: precision test of pQCD splitting functions In PbPb: if color coherence is at work, medium is not expected to modify the imbalance of the subjet momentum Also, sensitivity to the medium response in certain regions of phase space

ALICE pPb results, Pb-Pb analysis ongoing....

Flow

Anysotropy in coordinate space is transformed into momentum space by expansion

Collective expansion and PID

Thermalization pressure drives the expansion Cornerstone in the interpretation of the heavy ion data Particles move in a common velocity field Momentum distribution "blue-shifted"+ mass ordering

Transport properties: state of the art

Bayesian approach to constrain theory parameters

Theory parameters are Initial conditions, temperature dependent shear and bulk viscosities, thermalization time of the QGP, transition temperature from hydrodynamic evolution to microscopic evolultion etc

• Value of shear viscosity minimal, => perfect liquid, $\eta/s = 0.08^{+...}_{-...}$ strongly coupled plasma.

No quasi-particles in a perfect liquid (up to what scale?)

J.E. Bernhard et al., arXiv:1605.03954v2, fit to ALICE data.

Heavy Flavour transport

Heavy Flavour and collective motion

Participation of low p_{T} charm in collective motion of the QGP

Heavy Flavour and collective motion

Models where charm quarks pick up collective flow via recombination and/or subsequent elastic collisions in expanding hydrodynamic medium do better at describing R_{AA} and v_2 at low p_T

Data/model comparison allows the extraction of fundamental parameters like the diffusion coefficient and charm thermalization time 24

Heavy Flavour transport: state of the art

Yu.Xu et al, arXiv:1704.07800

Bayesian analysis using ALICE data to calibrate model parameters to estimate temperature dependence of heavy quark diffusion coefficients

Test of QCD transport theory

Small systems

Small systems: Hadronisation

 $J_{/\psi}$ production enhanced in high multiplicity pp collisions

Role of multiple parton interatctions (MPI)

Ratio of charm baryons to D mesons not reproduced in event generators

Role of color reconnections?

Small systems: Hadrochemistry

Smooth evolution of particle ratios with multiplicity

Not reproduced by pQCD models with independent string fragmentation

"Collectivity" introduced by string overlap and fusion needed to increase string tension and allow for heavier objects

Remnants of Heavy Ion Physics in high multiplicity pp or pPb collisions

Small systems: Flow and jet quenching

Significant v2 (vn) and negligible quenching?

Both jet quenching and flow are the result of the interactions with/between the constituents of the QGP

Seminclusive hadron-jet measurements to study hard processes and constrain jet quenching in small system without relating event activity to geometry

Summary

-Accessing microscopic properties of QCD matter via jet substructure, in reach. Strong sinergy between jet substructure in Heavy lons and HEP community Plethora of jet tools to explore: grooming, iterative reclustering....

-Constraining equilibrium properties of QCD matter, advanced. Differencial data provides great constraint to Bayesian approaches to model-data comparison.

-Efforts to understand transition between small systems and big systems, onset of critical phenomena, interplay between hard process and underlying event.

ALICE provides key data constrains to the three problems above

Run 2: Collected (Goal)

	pp, 5 TeV	pp, 13 TeV	p-Pb, 5 TeV	p-Pb, 8 TeV	Pb-Pb 5 TeV
L _{int}	112 nb ⁻¹ (1 pb ⁻¹)	14 (<mark>50</mark>) pb ⁻¹	3.4 nb ⁻¹	21 nb ⁻¹	250 µb ⁻¹ (1 nb-1)
N _{MB}	128 (<mark>1000</mark>) M	1.5 G (<mark>3.7 G</mark>)	764 M	70 M	157M (<mark>250M</mark>)
Nнм	N/A	814 M (2.5 G)	N/A	47 M	(200 M)

