

Multiplicity Evolution of PID Balance Functions in Pb-Pb, p-Pb and pp Collisions with ALICE

Jinjin(Au-Au) Pan Wayne State University On Behalf of the ALICE Collaboration

US-LHC | 11/02/2017

Balance Functions – A Signal of Late Hadronization

S. Bass, P. Danielewicz and S.Pratt. PRL 85, 2689 (2000)

 $q\bar{q}$ pair creation in a rapidly expanding system

Early stage creation: larger final separation, wider balance function distributions

Late stage creation(Most qq pairs created at hadronization): pairs more correlated, narrower balance function distributions

Balance Functions identify balancing charges on a statistical basis.

11/02/17

Jinjin(Au-Au) Pan US LHC Users Meeting

 $\Delta \vec{p}$

momentum difference

Balance Functions of Unidentified Charged Particles

Balance Functions of Unidentified Charged Particles

4

PID Balance Functions – How They Work

- \succ Charged π pairs
- Charged K pairs
- \succ π/K pairs
- Proton Anti-Proton pairs 11/02/17

Jinjin(Au-Au) Pan US LHC Users Meeting

Measuring Balance Functions - the Observable

Cumulant
$$C_2(x_1, x_2) = \rho_2(x_1, x_2) - \rho_1(x_1)\rho_1(x_2)$$

Normalized Cumulant $R_2(x_1, x_2) = \frac{C_2(x_1, x_2)}{\rho_1(x_1)\rho_1(x_2)}$

 $x \equiv \{y, \varphi, p_T\}$ $\rho(x) = \frac{1}{\sigma} \frac{d\sigma}{dx}$

R₂ is a robust observable! Single track efficiencies cancel out of the ratio

4 different charge combinations for R_2 : (+ -), (- +), (+ +), and (- -)

Charge Independent (CI) combinations

Charge Dependent (CD) combinations

$$CI = \frac{1}{2} \{ LS + US \}$$
$$CD = \frac{1}{2} \{ US - LS \}$$

$$LS = \frac{1}{2} \{ (++) + (--) \}$$
$$US = \frac{1}{2} \{ (+-) + (-+) \}$$

CD is proportional to the Balance Function $dN_{ch} = CD = dN_{ch} + 1$

$$B(\Delta x) \approx \frac{dN_{ch}}{dx} R_2^{CD} = \frac{dN_{ch}}{dx} \frac{1}{2} \left[R_2^{+-} - R_2^{++} + R_2^{-+} - R_2^{--} \right]$$

11/02/17

Jinjin(Au-Au) Pan US LHC Users Meeting

Experimental Method - PID

Pion 2D R₂^{CD}(\Deltay, Δφ) in 2.76 TeV Pb-Pb

Pion 1D R₂^{CD} Projections & Widths Projection Width

$R_2^{CD}(\Delta y)$

$R_2^{CD}(\Delta \phi)$

11/02/17

Summary

- Pion $R_2^{CD}(\Delta y)$ and $R_2^{CD}(\Delta \phi)$ widths *narrowing* for more central events in Pb-Pb
- consistent with:
 - -> ALICE unidentified particle BF results
 - -> 2-wave quark production model
 - -> radial flow effect

Outlook:

- Kaon BF
- Pion-Kaon BF
- BF w.r.t Event Plane

Thank you!

