

Hollow electron lenses for HL-LHC

Miriam Fitterer (FNAL)

US LHC Users Association Meeting, 02 November 2017

Many thanks to: R. Bruce, D. Perini, S. Redaelli, J. Wagner (CERN), G. Apollinari, G. Stancari, A. Valishev (FNAL)

What is an electron lens?

Why do we need a hollow electron lens for HL-LHC?

Halo, core and luminosity

- **goal HL-LHC:** increase luminosity by a factor of 10 beyond the original design value (from 300 to 3000 fb⁻¹)
- luminosity is generated by the particles in the beam core
- halo particles do not contribute to the luminosity, but they generate unwanted losses

	stored beam energy [MJ]	
Tevatron	2	
LHC 2016	250	
nominal LHC	362	
HL-LHC	692	

- stored beam energy increases by factor 2 compared to LHC or factor
 350 compared to the Tevatron
- prediction for HL-LHC:33.6 MJ are stored in tails= 15 x Tevatron beam
- electron lens controls losses with no luminosity loss

Passive halo control

Active halo control

Why do we need active halo control for HL-LHC?

- HL-LHC: factor 2 larger losses for same loss assumption as for LHC
- parameters and operational scenarios pushed well beyond LHC
 - Doubled bunch intensity in smaller emittance
 - Operation with crab cavities, no experience with protons
 - Luminosity levelling
 - ⇒ Extrapolation of loss from LHC complex
- Concerns from fast failures (crab cavities) in presence of overpopulated tails

electron lens provides margin and thus reduces risk

⇒ inclusion in HL-LHC baseline strongly considered (see e-lens reviews 1 & 2)

Controlling halo with an e-lens without affecting the core

Due to radial symmetry the hollow electron lens yields a strong non-linear field for halo particles and no field at core region

⇒ active halo control

Past and future research:

- concept first tested at the Tevatron for antiprotons in 2011
- experiments at RHIC in spring 2018 with ions
- simulations to model experiments and predict performance for HL-LHC

Controlling halo with an e-lens without affecting the core

BUT: Imperfections in the profile can **break the radial symmetry**

- ⇒ residual field at the beam core
- DC operation no problem
- pulsed operation induces noise on halo (wanted) and core (not wanted)
 - ⇒ luminosity loss

Past and future research:

- experiments at LHC in 2016 and 2017 using the kicker of the transverse damper and aiming at defining tolerances on field imperfections
- simulations to model experiments and define tolerances for HL-LHC

Summary

- HL-LHC pushes parameters and operational scenarios
- extrapolation of losses to these new parameters is not trivial
- electron lenses provide margin for machine protection through active halo control
- strong consideration to include hollow electronlens in HL-LHC baseline
- first proof of principle of hollow electron lens collimation at the Tevatron (2011)
- experiments at the LHC to study effect on beam core in pulsed operation (2016-2017)
- further experiments at RHIC (2018)
- simulations to predict performance of the electron lens for HL-LHC

Questions?

How to further increase luminosity in the LHC – the HL-LHC upgrade

- 1. $1.9 \times$ number of particles N_p
- $L = \frac{n_b N_p^2 f_0}{4\pi \sigma^2} R(\sigma_z, \theta)$

- 2. $0.4\times$ beam size at IP σ
- 3. $2 \times$ crossing angle $\theta \rightarrow 0.3 \times$ luminosity reduction R
- 4. Crab Cavities for luminous area control → L=19×10³⁴ cm⁻²s⁻¹ too high!
- 5. <u>Luminosity levelling</u> by dynamically changing focusing (β *=0.7 \rightarrow 0.15m) in store \rightarrow L=5 \times 10³⁴ levelled

LHC vs HL-LHC

	LHC nominal	HL-LHC
Beam energy	7 TeV	
Number of bunches	2808 (25 ns)	2748 (25 ns)
protons / bunch [10 ¹¹]	1.15 (0.58A)	2.2 (1.09A)
Energy in one beam [MJ]	360	680
$\gamma \epsilon_{x,y}$ [μ m], rms	3.75	2.5
β* [m] at IP1-5	0.55	0.15
X-angle [μrad], separation	285, 9.3σ	<mark>590</mark> , 12.5σ
Geometrical Luminosity loss factor	0.83	0.3 Crab Cavities →0.83
Quadrupole bore [mm], gradient [T/m]	70, 215	150 , 132.6
Peak luminosity [10 ³⁴]	1.0	5.0
Pile up	25	138
Line pile up density [mm ⁻¹]	0.1	1.25
Machine state during HEP store	static	dynamically changing focusing $-\beta$ * levelling

What is an electron lens

- DC or pulsed low-energy e-beam
- circulating beam affected by electromagnetic field of e-beam
- e-beam confined and guided by strong solenoids

