
DIANA Contributions
Update

Brian Bockelman

Including work from Jim Pivarski, Oksana Shadura, and Zhe Zhang

DIANA Contributions  
(Since July)

• Since the F2F meeting, DIANA contributions have focused on
the following areas:

• Parallelism: parallel, asynchronous unzipping of baskets
(utilizing TBB).

• Compression: LZ4, removing redundant information from
data formats.

• Bulk IO: Shown to be much faster for small events; working
to broaden the impact.

• I’ll give some highlights in each area and discuss planned work.

Parallelism: 
Parallel, Asynchronous Unzipping

• Currently, IMT-enabled reading of branches causes all baskets in all active branches in the current event
cluster to be decompressed before control is returned to user thread.

• This is a synchronous serialization point: user must wait for all baskets to decompress, including
tails.

• Unless user utilizes TDataFrame (which they should!), it’s likely the user thread is single-threaded: many
idle cores between IO calls!

• Zhe has been making this activity asynchronous. Control is returned to the user thread immediately and
separate TBB tasks are launched to do decompression. User thread is only blocked when data is needed.

• Builds on top of old pthread-based parallel interface but implementation instead invokes the ROOT
TBB wrapper classes.

• See: https://github.com/root-project/root/pull/1010

• Performance beats current IMT mode - as it should. Tested on a large range of branch layouts.

• Ready to be reviewed more in-depth and merged!

https://github.com/root-project/root/pull/1010

Compression: LZ4
• Backported to all active release series (5.34, 6.08, 6.10, & in

master).

• See Jim’s presentation for detailed numbers.

• See also: https://indico.cern.ch/event/567550/contributions/
2627167/

• Short version: for reading, nearly the same performance as
uncompressed files. File-size penalty versus default zlib varies
(depends highly on contents!), but is around 15%.

• Decision point: change to default “today” or wait until after 6.12
has branched?

https://indico.cern.ch/event/567550/contributions/2627167/
https://indico.cern.ch/event/567550/contributions/2627167/

ZLIB Updates
• We have continued to make progress on the goal of getting CloudFlare’s zlib speed improvements in

ROOT.

• Approximate improvement is 20% in decompression speeds and 2x-4x for compression (zlib-6 vs
zlib-9).

• Oksana has gotten their patches building inside ROOT and make sure there aren’t regressions on other
platforms.

• CloudFlare tailored them to only work on new x86-64 cores…

• This has been a bit stuck due to other zlib-related cleanups:

• Unit test failures if -ffast-math is enabled.

• Getting ROOT to use only one version of zlib. Currently can be up to 3!

• CMS has been using these quite happily: default changed from zlib-7 to zlib-9. Smaller files and less
time spent in compression. [Note: most data by volume probably still in LZMA.]

• See: https://github.com/root-project/root/pull/956

https://github.com/root-project/root/pull/956

ZSTD

• Yet another compression algorithm? Why would you do
that, Brian?

• Answer #1: ZSTD is flexible and fast. Depending on
target level, competitive with LZ4, LZMA, and ZLIB.
Better than ZLIB (compression ratio / speed) across the
board. Not as good as LZ4 and LZMA for at the
extremes.

• See: http://facebook.github.io/zstd/

http://facebook.github.io/zstd/

Source: https://clearlinux.org/blogs/linux-os-data-compression-options-comparing-
behavior

https://clearlinux.org/blogs/linux-os-data-compression-options-comparing-behavior
https://clearlinux.org/blogs/linux-os-data-compression-options-comparing-behavior

ZSTD - Answer #2
• ZSTD is also interesting because it has a rich API for generating and

using compression dictionaries.

• Facebook developers report massive speedups and compression
ratio improvements when using dictionaries (almost a 3x improvement
in compression ratio!) on a corpus of 10,000 entries of 1KB each.

• If we can get anything near that, then it would be a huge improvement for
ROOT.

• Idea: after the first event cluster, analyze the buffer and write out a
separate compression dictionary.

• No clue how much of Facebook’s success can be repeated in ROOT,
but appears worth investigating this winter.

ZSTD - With Dictionaries
Source: http://facebook.github.io/zstd/

Compression
• We have found a few places in the file format where we can skip writing out redundant

information.

• Some of the redundancies compress well, meaning the savings is in CPU time and
memory use.

• Some compressed poorly, meaning the savings is in output file size.

• Have an almost-merged PR for removing redundancies from entry offset arrays.

• Will be a few follow-ups to improve the range of classes where this technique is
applicable.

• (Again, more from Jim / Oksana later today)

• There are additional savings to be had in removing redundant class version information.

• There are some degenerate cases where buffer offset arrays can be skipped without
forward-compatibility breaks.

Forward Compatibility
Breaks

• The entry offset work motivated us to finally
figure out a mechanism for cleanly
introducing forward-compatibility break.

• Solving this long-standing problem is a
prerequisite for more innovation at the file-
format level.

• NOTE: intent is that these features are
disabled by default until ROOT7.

🎉 
🎉 
🎉

Bulk IO
• Since the last F2F, the bulk IO:

• Matured enough to build two high-level interfaces (Python/numpy
and TTreeReader-like).

• Got enough functionality to do realistic performance comparisons.

• Got into a reviewable state and put in as a PR.

• First round of review done: quite a few changes to do (but very good
suggestions from Philippe!), but fundamental idea remains solid.

• Goal: have this merged this calendar year (but likely not in time for
6.12)

Bulk IO-Inspired
• Bulk IO has inspired two sub-projects in ROOT IO:

• One-basket-per-cluster mode: Having multiple baskets per event
cluster triggers significant special-case code. This extra overhead is
noticeable in the bulk IO performance tests. This mode will cause
buffer memory to grow until an entire cluster is serialized.

• This branch needs a few more tests and documentation, then is
ready to be merged.

• Fully-split mode for std::vector of primitive types. Currently,
std::vector<int> is never-split, causing performance penalties
when used from bulk IO.

• Work not started.

Bulk IO - Other
• Would like to use the TDataSource facility with bulk IO,

potentially turbocharging TDataFrame use.

• Have some concern that TDataFrame is not yet fast
enough for bulk IO to matter.

• What’s the best performance test along these lines?
Future investigation needed!

• With bulk IO and modern storage technology (NVMe, Intel X-
Point), we may finally benefit from utilizing mmap to minimize
latency for reading files: future investigation needed!

Preferred/Predicted
Timelines for Merging

• #1003 - skip writing basket offset arrays.

• #1010 - Parallel, asynchronous unzipping.

• #240 - Miss cache. Improves behavior when accessing infrequently-used
branches.

• #956 - Improved zlib. May depend on #1149 (using one, consistent version of zlib
throughout ROOT. See ROOT-8839)?

• #943 - Bulk IO. See prior discussion. Needs to rework to avoid interface changes
for TBufferFile.

• #774 - “one basket per cluster” mode.

• Note this isn’t in priority order - some high-priority items (bulk IO) are likely coming
later due to the number of interface changes.

6.12 forks

Questions?

