
LZ4, BulkIO, and offset removal performance

Jim Pivarski

Princeton University – DIANA

October 11, 2017

1 / 15



Motivation for this study

Three updates to ROOT I/O are aimed at speeding up or reducing file size for
end-user analysis:

I new compression algorithm: LZ4 (speed)

I reading TBasket data directly into arrays: BulkIO (speed)

I removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOD in particular because

I it is aimed at end-users (1–2 kB/event)

I it is broadly intended for 30–50% of analyses (not an individual user’s ntuple)

Also including studies of LHCb (thanks, Oksana!).

No ATLAS files because I can’t generate new ones or TTree::CopyTree old ones.

2 / 15



Motivation for this study

Three updates to ROOT I/O are aimed at speeding up or reducing file size for
end-user analysis:

I new compression algorithm: LZ4 (speed)

I reading TBasket data directly into arrays: BulkIO (speed)

I removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOD in particular because

I it is aimed at end-users (1–2 kB/event)

I it is broadly intended for 30–50% of analyses (not an individual user’s ntuple)

Also including studies of LHCb (thanks, Oksana!).

No ATLAS files because I can’t generate new ones or TTree::CopyTree old ones.

2 / 15



Motivation for this study

Three updates to ROOT I/O are aimed at speeding up or reducing file size for
end-user analysis:

I new compression algorithm: LZ4 (speed)

I reading TBasket data directly into arrays: BulkIO (speed)

I removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOD in particular because

I it is aimed at end-users (1–2 kB/event)

I it is broadly intended for 30–50% of analyses (not an individual user’s ntuple)

Also including studies of LHCb (thanks, Oksana!).

No ATLAS files because I can’t generate new ones or TTree::CopyTree old ones.

2 / 15



Parameters of the NanoAOD studies

I AWS instance with a fast SSD disk (i2.xlarge).

I No resource contention because I paid for exclusive access.

I “Writing” means a TTree::CopyTree with new TFile compression.

I “Reading” means filling a class made by MakeClass.

I “BulkIO” means filling arrays through GetEntriesSerialized.

I Always reading from warmed cache.

I Five repeated trials; standard deviations are small compared to trends.

3 / 15



LZ4 doesn’t compress as well as ZLIB, LZMA

4 / 15



. . . same for LHCb

5 / 15



But it’s faster: levels 1–3 are as fast as writing uncompressed

6 / 15



. . . same for LHCb

7 / 15



More importantly: reading is as fast as uncompressed

8 / 15



And BulkIO reading is super-fast: serious penalty for LZMA

9 / 15



Speed vs. size trade-offs

write speed vs size

read speed vs size

BulkIO speed vs size

10 / 15



Removing unnecessary offsets

TBranches for variable-sized data contain offsets indicating where each entry starts.

I This is unnecessary for branches with counters (e.g. "Muon.pt[nMuons]/F").

I A fix is in progress (PR #1003) to optionally not write these offsets.

I May also write counts, instead of offsets, since repeated values might be more
compressible.

My study pre-dated (inspired) this PR; I constructed a copy

of NanoAOD without offsets by putting all muon data into a

flat TTree, all jet data into a flat TTree, etc.

11 / 15

https://github.com/root-project/root/pull/1003


After compression, this saves 8–18%

12 / 15



And it closes the LZ4/LZMA gap to a factor of 1.5×

13 / 15



And it closes the LZ4/LZMA gap to a factor of 1.5×

13 / 15



Do offsets vs. counts matter? Yes for LZ4.

Synthetic test:

I generated
Poisson-random
counts and
integrated them
to make offsets,
then ZLIB and
LZ4 compressed
them.

14 / 15



Conclusions

LZ4 is as fast as uncompressed data for traditional GetEntry jobs.

BulkIO is an order of magnitude faster than GetEntry, especially with LZ4.

Unnecessary offsets add ∼10% to file size; may be removed.

Counts compress better than offsets, especially for LZ4.

15 / 15


