LZ4, BulklO, and offset removal performance

Jim Pivarski

Princeton University — DIANA

October 11, 2017



Motivation for this study ¢diana

Three updates to ROOT 1/0O are aimed at speeding up or reducing file size for
end-user analysis:

» new compression algorithm: LZ4 (speed)
» reading TBasket data directly into arrays: BulklO (speed)

» removing offset data from TBranches that have a counter (size)



Motivation for this study ¢diana

Three updates to ROOT 1/O are aimed at speeding up or reducing file size for
end-user analysis:

» new compression algorithm: LZ4 (speed)
» reading TBasket data directly into arrays: BulklO (speed)

» removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOQOD in particular because
» it is aimed at end-users (1-2 kB/event)

» it is broadly intended for 30-50% of analyses (not an individual user’s ntuple)



Motivation for this study ¢diana

Three updates to ROOT 1/O are aimed at speeding up or reducing file size for
end-user analysis:

» new compression algorithm: LZ4 (speed)
» reading TBasket data directly into arrays: BulklO (speed)

» removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOQOD in particular because
» it is aimed at end-users (1-2 kB/event)

» it is broadly intended for 30-50% of analyses (not an individual user’s ntuple)

Also including studies of LHCb (thanks, Oksana!).

No ATLAS files because | can't generate new ones or TTree: : CopyTree old ones.



Parameters of the NanoAOD studies € diana

» AWS instance with a fast SSD disk (i2.xlarge).

» No resource contention because | paid for exclusive access.

> “Writing” means a TTree: :CopyTree with new TFile compression.
» “Reading” means filling a class made by MakeClass.

> “BulklO" means filling arrays through GetEntriesSerialized.

» Always reading from warmed cache.

> Five repeated trials; standard deviations are small compared to trends.



LZ4 doesn't compress as well as ZLIB, LZMA €9diana

CMS NanoAOD

5

= 7lib
- [7ma
! lz4
H
_5; 3
o
=,
& .
w ra
5
=
[NE)
0o
0 1 2 3 4 ] 6 7 8 9

Cormpression level (0 and 1-9)



... same for LHCb

LHCB B2ppKK2011_md_noPIDstrip.root (22920 entries)

Event size (kB/event)

- |74
= | ZMA
ZIP

o
N

4 6 8 10

Compression level



But it's faster: levels 1-3 are as fast as writing uncompressed €9diana

CMS NanoAOD

6.00 - 7lib
- [7ma
= [z4
T
= 400
K
2
[=]
=
2 200
o
&
[1:]
o
0.00
0 2 3 4 5 6 7 ] 9

Cormpression level (0 and 1-9)



... same for LHCb ¢diana

= |74
= | ZMA
ZIP

Rate (Events/ms)

0 2 4 6 8 10

Compression level



More importantly: reading is as fast as uncompressed ¢diana

CMS NanoAOD

20.00 = 7lib
- [7ma
=
T 1500 lz4
6
=
E
£ 1000
[=]
=
E
m
@
G 5.00
Q
=
o
0.00
0 2 3 4 5 b 7 ] 9

Compression level (0 and 1-9)



And BulklO reading is super-fast: serious penalty for LZMA €9diana

CMS NanoAOD

600.00 - 7lib
o - [7ma
T
=
& lz4
E 400.00
S
o
=
=
o
@
S 200.00
=
o
5
24
o
o

0.00

0 2 3 4 5 6 7 ] 9

Compression level (0 and 1-9)



Speed vs. size trade-offs

write speed vs size

6 T T T
« °
124 1-3 uncompressed .
a°f 1 read speed vs size
= ‘ 20 T T T
% At zlib . 1z4 4-9 §
o + X —
e * = 1z44-9 124 1-3 .
o3l ' x ] .l ¥ x . | BulklO speed vs size
= * 5
E . % uncompressed AGOO T T T
N
k] 2 * 1 g % z
2 =10 zlib <5001 ®
g lzma + o U b ) uncompressed
L 4 £ k=]
X+ El £ 400
% 1 ° | |
0 L L L - S 5l lzma 4 2
0 1 2 3 4 5 g »( 5300 Iz44-9 1z41-3 |
Event size (kB/event) 4 5 * %
°)
0 L | ! 1 =200} }
0 1 2 3 4 5 a
Event size (kB/event) 5100 - Zlib i
o)
8 lzma *
0 Lo L L L
0 1 2 3 4 5

Event size (kB/event)

10/15



Removing unnecessary offsets €9 diana

TBranches for variable-sized data contain offsets indicating where each entry starts.
» This is unnecessary for branches with counters (e.g. "Muon.pt [nMuons] /F").
» A fix is in progress (PR #1003) to optionally not write these offsets.

» May also write counts, instead of offsets, since repeated values might be more
compressible.

My study pre-dated (inspired) this PR; | constructed a copy
of NanoAOD without offsets by putting all muon data into a
flat TTree, all jet data into a flat TTree, etc.

11/15


https://github.com/root-project/root/pull/1003

After compression, this saves 8-18%

File size without duplication of particle counts

100.00% = zlib
- - |zma
=] o= npe:
-E': 95.00% lz4
g
=3
o 90.00%
=
&
@ B85.00%
'S
=
£  80.00%
L]
i

75.00%

0 1 2 3 4 5 6 7 8 9

Cormpression level (0 and 1-9)
12/15



And it closes the LZ4/LZMA gap to a factor of 1.5x

CMS NanoAOD

Event size (kB/event)

5

(7%

(=]

0o

¢diana

= 7lib
- [7ma

lz4

0

(=]

3 - 5 ]

Cormpression level (0 and 1-9)

13/15



And it closes the LZ4/LZMA gap to a factor of 1.5x €odiana

CMS NanoAOD without particle count duplication

5

= 7lib
= [7ma
4 lz4
H
-iihd 3
o
=,
& .
w ra
5
=
[NE)
0o
0 1 2 3 4 ] 6 7 8 9

Cormpression level (0 and 1-9)

13/15



Do offsets vs. counts matter? Yes for LZ4.

Synthetic test:

| generated
Poisson-random
counts and
integrated them
to make offsets,
then ZLIB and
LZ4 compressed
them.

Compression ratio

60.00% = 7lib offsets
= |74 offsets
zlib counts

40.00% = |74 counts

20.00%

0.00%

0.01 0.1 ’ 10 100

Mean of Poisson random variable



Conclusions ¢diana

LZ4 is as fast as uncompressed data for traditional GetEntry jobs.
BulklO is an order of magnitude faster than GetEntry, especially with LZ4.
Unnecessary offsets add ~10% to file size; may be removed.

Counts compress better than offsets, especially for LZ4.

15/15



