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Motivation for this study ¢diana

Three updates to ROOT 1/O are aimed at speeding up or reducing file size for
end-user analysis:

» new compression algorithm: LZ4 (speed)
» reading TBasket data directly into arrays: BulklO (speed)

» removing offset data from TBranches that have a counter (size)

Focus on CMS NanoAOQOD in particular because
» it is aimed at end-users (1-2 kB/event)

» it is broadly intended for 30-50% of analyses (not an individual user’s ntuple)

Also including studies of LHCb (thanks, Oksana!).

No ATLAS files because | can't generate new ones or TTree: : CopyTree old ones.



Parameters of the NanoAOD studies € diana

» AWS instance with a fast SSD disk (i2.xlarge).

» No resource contention because | paid for exclusive access.

> “Writing” means a TTree: :CopyTree with new TFile compression.
» “Reading” means filling a class made by MakeClass.

> “BulklO" means filling arrays through GetEntriesSerialized.

» Always reading from warmed cache.

> Five repeated trials; standard deviations are small compared to trends.



LZ4 doesn't compress as well as ZLIB, LZMA €9diana
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... same for LHCb

LHCB B2ppKK2011_md_noPIDstrip.root (22920 entries)
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But it's faster: levels 1-3 are as fast as writing uncompressed €9diana
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... same for LHCb ¢diana
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More importantly: reading is as fast as uncompressed ¢diana

CMS NanoAOD
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And BulklO reading is super-fast: serious penalty for LZMA €9diana

CMS NanoAOD
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Speed vs. size trade-offs

write speed vs size
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Removing unnecessary offsets €9 diana

TBranches for variable-sized data contain offsets indicating where each entry starts.
» This is unnecessary for branches with counters (e.g. "Muon.pt [nMuons] /F").
» A fix is in progress (PR #1003) to optionally not write these offsets.

» May also write counts, instead of offsets, since repeated values might be more
compressible.

My study pre-dated (inspired) this PR; | constructed a copy
of NanoAOD without offsets by putting all muon data into a
flat TTree, all jet data into a flat TTree, etc.
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https://github.com/root-project/root/pull/1003

After compression, this saves 8-18%

File size without duplication of particle counts
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And it closes the LZ4/LZMA gap to a factor of 1.5x

CMS NanoAOD
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And it closes the LZ4/LZMA gap to a factor of 1.5x €odiana

CMS NanoAOD without particle count duplication
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Do offsets vs. counts matter? Yes for LZ4.

Synthetic test:

| generated
Poisson-random
counts and
integrated them
to make offsets,
then ZLIB and
LZ4 compressed
them.
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Conclusions ¢diana

LZ4 is as fast as uncompressed data for traditional GetEntry jobs.
BulklO is an order of magnitude faster than GetEntry, especially with LZ4.
Unnecessary offsets add ~10% to file size; may be removed.

Counts compress better than offsets, especially for LZ4.
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