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Motivation: start by stating the obvious

ROOT’s selective reading is very important for analysis.

Datasets have about a thousand branches1, so if you want to plot a quantity from a
terabyte dataset with TTree::Draw, you only have to read a few gigabytes from disk.

Same for reading over a network (XRootD).

auto file = TFile::Open("root://very.far.away/mydata.root");

This is GREAT.

13116 ATLAS MC, 1717 ATLAS data, 2151 CMS MiniAOD, 675+ CMS NanoAOD, 560 LHCb
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Conversation with computer scientist

So it sounds like you already have a columnar database.

Not exactly— we still have to manage data as files,
rather than columns.

What? Why? Couldn’t you just use XRootD to manage
(move, backup, cache) columns directly? Why does it
matter that they’re inside of files?

Because. . . because. . .
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Evidence that it matters: the CMS NanoAOD project

Stated goal: to serve 30–50% of CMS analyses with a single selection of columns.

Need to make hard decisions about which columns to keep: reducing more makes data
access easier for 50% of analyses while completely excluding the rest.

If we really had columnar data management,
the problem would be moot: we’d just let the

most frequently used 1–2 kB of each event
migrate to warm storage while the rest cools.

Instead, we’ll probably put the
whole small copy (NanoAOD) in

warm storage and the whole large
copy (MiniAOD) in colder storage.

This is artificial.
There’s a steep popularity distribution across columns,
but we cut it abruptly with file schemas (data tiers).
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Except for the simplest TTree structures, we can’t pull individual branches
out of a file and manage them on their own.

But you have XRootD!

Yes, but only ROOT knows how to interpret a branch’s
relationship with other branches.
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What would it look like if we could?

CREATE TABLE derived_data AS
SELECT pt, eta, phi, deltaphi**2 + deltaeta**2 AS deltaR
FROM original_data WHERE deltaR < 0.2;

creates a new derived data table from original data, but links, rather than
copying, pt, eta, and phi.2

If original data is deleted, the database would not delete pt, eta, and phi, as
they’re in use by derived data.

For data management, this is a very flexible system, as columns are a more granular
unit for caching and replication.

For users, there is much less cost to creating derived datasets— many versions of
corrections and cuts.

2Implementation dependent, but common. “WHERE” selection may be implemented with a stencil.
6 / 12
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Idea #1. Cast data from ROOT files into a well-known
standard for columnar, hierarchical data; manage those

columns individually in an object store like Ceph.

1. Apache Arrow is one such standard. It’s similar to ROOT’s splitting format but
permits O(1) random access and splits down to all levels of depth.

2. PLUR or PLURP is my subset of the above with looser rules about how data may
be referenced. Acronym for the minimum data model needed for physics:
Primitives, Lists, Unions, Records, and maybe Pointers (beyond Arrow).

(the “standard database” approach)
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Idea #2 (this talk). Keep ROOT data as they are, but put
individual TBaskets in the object store. TFile/TTree subclasses

fetch data from the object store instead of seeking to file positions.

1. Presents the same TFile/TTree interface to users; old scripts still work.

2. But data replication, storage class, and caching are handled by the object store
with columnar granularity.

3. Branches are shared transparently across derived datasets: all trees are friends.

4. The logic of sharing, reference counting branches, managing datasets, etc. must
all be implemented in ROOT; only ROOT understands how to combine branches.

(the “ROOT becomes the database” approach)
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How it could be done

I Subclass of TFile initializes itself by getting data from a “controlling” database
(document store like MongoDB might be best).

I Reference counts for objects referenced by TKeys (including TBaskets and user
objects like histograms) are maintained by this controlling database.

I Bulk data, the contents of TKeys, are in a “warehouse” database (object store—
might be the same database). Optimal basket size may be big, like megabytes.

I REST APIs for flexibility; TBaskets fetched by HTTP GET, may be web-cached.
No new ROOT dependencies.

I Methods for deriving new TTrees from old TTrees:

I share common TBranch data by default;
I “soft skim” by stencil (event list/event bitmap), “hard skim” only if re-basketization

is needed to compactify results (keeping fewer than ∼10% of original);
I save all provenance and use git-like versioning to determine if two branches are

related/may be combined (for a join by index position, rather than mutual column).

I No user-facing partition boundaries: huge dataset appears as one TTree.
I Users work in shared TFile: home TDirectories; permissions managed by database.
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Two modes of use

Direct connection
User launches ROOT, does TFile::Open("rootdb://data.cern/cms"), and
extracts objects for analysis: Get("home/username/myhist")->Draw().

Job submission
User passes a macro, TTree::Draw request, or TDataFrame to a service that
parallelizes it and puts results in the user’s home TDirectory.

I compute nodes use this same interface to communicate with storage;

I but a scheduler attempts to maximize shared cache locality on the compute nodes.

This is the “query server” idea I’ve been exploring for some time now,
except that all of the interface is ROOT.
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auto file = TFile::Open("rootdb://data.cern/cms");

file->Get("home/username")->cd();

file->Get("derived_data")->Draw("x >> hist");

file->Get("hist")->Fit("gaus");

user's laptop

compute nodes

control db

ca
ch

eGet TBasket data,
perform calculation,
save to "hist" in db.

Preferentially send jobs to
compute nodes that have the
TBaskets in cache...

dispatch

warehouse db

HTTP

HTTP

REST

REST

Zookeeper
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Questions for you

Question: How would you feel if I developed this kind of service within ROOT
(idea #2), rather than outside of ROOT (idea #1)?

I’d want to sketch it out in Python (my uproot project) to figure out the
architecture before committing to the ROOT codebase: ∼year timescale.

Question: Deeply nested columnar splitting, zero-copy structure manipulations, and
many database indexing techniques are not possible with today’s ROOT
serialization.

Are you interested in forward-incompatible changes to ROOT
serialization that would make these things possible? I could propose
them as a ROOT 7 serialization format.

(Subject of another talk.)
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