
CMS ROOT I/O update

Dan Riley (Cornell)
ROOT I/O Workshop, 2017-10-11

1

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

ROOT I/O limits CMS scaling

CMS production jobs are multithreaded
• Production jobs currently use 4 cores with

4 framework event streams
• Output is handled by “one” modules that

can only be active on one thread at a time
• ROOT output is the dominant source of

output stalls
- We lose efficiency with more than 4 cores,

preventing us going to 8 cores
• Compression is the principal bottleneck

- Especially for AOD and MINIAOD data
compress with LZMA

2

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

Previously…

Presented some experiments at the 2017-06-12 ROOT IO workshop
• Prototype using TMemFiles as intermediate buffers (based on a concept from Philippe)

TBufferMerger
• Based on the same concept
• Conceptually nice interface that worked well for us
• Developed a new prototype using a new framework class

- Some success!
- Also some issues…

• Have been working with the developers to address the issues
- Have not finished evaluating the latest changes

3

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

CMS Implementation

Refactored the CMS output module
• Kept single-threaded (“one”) output module for cases that are IO bound
• Factored out common bookkeeping code
• Chris Jones implemented a new “limited” module type

- Normal “stream” and “global” modules have parallelism limited only by the thread count;
“limited” modules have explicitly limited parallelism

- Goal is to only have as many TBufferMerger buffers as necessary, not one for every thread
• Parallel output module uses a tbb::concurrent_priority_queue to manage a pool of

output buffers
- Priority is set so that the available TBufferMerge with the most entries is used, to prefer filling

buffers quickly
- Minimizes tail and synchronization effects (vs. FIFO/round-robin)

4

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

Status
Works well for “MINIAOD” data tier

Issues with “AOD” data tier with our default flush size
• TBufferMerger thread ends up doing too much work compressing metadata

- Eventually can’t keep up, building up a queue of buffers waiting to be processed
- Issue 1: amount of work done
- Issue 2: queue can grow without bound with no feedback to the client
- Issue 3: TBufferMerger only merged one TBufferMergerFile at a time
- Issue 4: gROOTMutex scope?

• ROOT responses (not yet evaluated by CMS)
- Callback at merge completion and new function to access queue size
- SetAutoSave() can set the TBufferMerger to delaying merging
- Have not evaluated tradeoff between setting the autosave size vs. increasing the flush size
- Should the merger empty its queue on every merge?

5

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

Some results

Results are for a full CMS reconstruction job writing only MINIAODSIM
output

• 12 threads
• limited::OutputModule concurrencyLimit set to 4

- Could have reduced to 3 or 2, as the third and fourth buffers a barely used
• 10,000 events for stall graphs, 40,000 for statistics

6

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

7

Stall Graph Comparison, LZMA 4
7

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

8

Stall Graph Comparison, LZMA 9

Note
scale

change

8

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

9

Statistics
40,000 events, MINIAOD LZMA 4, basic statistics:

• Single thread: 7.96 ev/sec, efficiency 0.907
StallMonitor> Module label # of stalls Total stalled time Max stalled time
StallMonitor> ---------------- ----------- ------------------ ----------------
StallMonitor> MINIAODSIMoutput 1030 4818.68 s 11.369 s

• FIFO queue: 8.62 ev/sec, efficiency 0.960
StallMonitor> Module label # of stalls Total stalled time Max stalled time
StallMonitor> ---------------- ----------- ------------------ ----------------
StallMonitor> MINIAODSIMoutput 62 158.863 s 10.649 s

• Priority queue: 8.76 ev/sec, efficiency 0.969
StallMonitor> Module label # of stalls Total stalled time Max stalled time
StallMonitor> ---------------- ----------- ------------------ ----------------
StallMonitor> MINIAODSIMoutput 39 5.513 s 0.299 s

Parallelization reduces # of stalls, “limited” module and priority queue
strategy reduces duration of stalls

9

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ROOT I/O Workshop — 2017-10-11

Next steps…

Use the TBufferMerger callback and queue interrogation
• Monitor when the merge queue is growing

- Log a warning message
- Defer scheduling writes to keep the queue from growing too large

• Possibly use to tune the flush algorithm

Evaluate the new autosave functionality
• Increasing autosave vs. increasing buffer flush size?

10

