
https://root.cern

ROOT
Data Analysis Framework

ROOT I/O
Performance and Parallelism

G. Amadio, P. Canal, D. Piparo
for the ROOT Team

https://root.cern

Overview

Updates coming with ROOT 6.12:

▶ TBufferMerger optimizations

▶ ROOT I/O performance improvements

● Concurrency of ROOT I/O

● Optimization of TTree::Fill()

2

TBufferMerger Class

3

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Output Thread

Disk

Data
Buffer

Data Queue
TBufferMerger

Write()

Benchmark:
TBufferMerger

with Random Data
▶ Fill a tree with one branch

with random numbers

▶ Synthetic benchmark that
exacerbates the role of I/O
by doing only lighweight
computations

▶ Create ~1GB of data and
write out to different media
(SSD and DRAM)

▶ Quad core laptop
Intel® Core i7 4710HQ
(2.5GHz, 6M cache)

4

hyperthreading

TBufferMerger Optimizations

5

▶ Output thread doing lots of work (compression)
● Solution: add a setting for controlling auto-save point
● Avoids creating too many TTree headers, which require compression

▶ Need a way to control queue size or rate-limit
● Solution: add a non-blocking callback mechanism to TBufferMerger
● Lets user decide when to create more data-producing tasks

by registering a function that gets called everytime a buffer is
removed from the merging queue

● Add functions that lets user query the size of the queue
● Auto-save forces flush to disk, which also avoids increases in memory

TBufferMerger Optimizations

6

Output thread compression with small and large auto-save

Concurrency Improvements in ROOT I/O

7

ROOT-8871

ROOT-9002

Before: many queries to type system → many useless waits

TClass:GetListOfBases()

TDirectory::RegisterContext()

TTree::AutoSave()

TBufferFile::WriteClassBuffer()

TClass:LoadClassInfo()

TDirectory::UnregisterContext()

TMemFile::ResetAfterMerge()

TClass:GetListOfBases()

https://sft.its.cern.ch/jira/browse/ROOT-8871
https://sft.its.cern.ch/jira/browse/ROOT-9002

Improving the
Performance of

ROOT I/O

8

before
optimization

after
optimization

parallel data generation

I/O to disk

▶ Use simple case with
TBufferMerger to optimize
ROOT I/O

▶ Same random number
generation from before

▶ Reduce number of mutex
locks acquired when
checking the type system

▶ Reduced from a few
hundred locks to a single
lock per thread

Improving the
Performance of

ROOT I/O
▶ Use simple case with

TBufferMerger to optimize
ROOT I/O

▶ Same random number
generation from before

▶ Reduce number of mutex
locks acquired when
checking the type system

▶ Reduced from a few
hundred locks to a single
lock per thread

9

before
optimization

after
optimization

parallel data generation

I/O to disk

Targeting ROOT 6.12

Concurrency Improvements in ROOT I/O

10

No more type system queries, only one wait per thread

Concurrency Improvements in ROOT I/O

11

No more type system queries, only one wait per thread

Optimization of TTree::Fill()

12

Divisions take up many CPU cycles for useless work

Optimization of TTree::Fill()

13

Bottomline

▶ ROOT continues to parallelise its I/O subsystem
● Focus not only on experiments’ data processing, but also on analysis

▶ Parallel writing to single output file via TBufferMerger
● Leveraged by TDataFrame already with snapshot action
● Good performance, can saturate an SSD

Changes already in master for ROOT 6.12 release:

▶ Optimised TTree::Fill() function avoids divisions
▶ Optimised parallel merging with TBufferMerger
▶ Output thread no longer does excessive compression work
▶ Callback function allows seamless framework integration

14

Questions?

