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Today, K, can be substantially reduced by cooling
down a cavity with a large temperature gradient-

® A. Romanenko, et al.,, Appl. Phys. Lett. 105, 234103 (2014).
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Based on the BCS
theory we calculate Rs
simultaneously taking
into account both the

contributions:
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superconductors with imperfect surface

FIG. 1. (a) A surface layer of gradually reduced BCS pairing
constant g(z). Inset shows a profile of g(x). (b) A super-
conductor covered with a normal layer of thickness d. The
vertical black line in (b) shows the S-N interface giving rise
to the contact resistance Rp.
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FIG. 1. (a) A surface layer of gradually reduced BCS pairing
constant g(z). Inset shows a profile of g(x). (b) A super-
conductor covered with a normal layer of thickness d. The
vertical black line in (b) shows the S-N interface giving rise

to the contact resistance Rp.
12



superconductors with imperfect surface
d
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These structures model realistic surfaces of
superconducting materials which can contain
oxide layers, absorbed impurities or
nonstoichiometric composition.
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Theoretical tool

We use the quasiclassical theory in the diffusive limit-

A hw, | \
(Usade/ equation 50" = AT cos 0 + AL sinff & = VhD;j/2A« (j =N, 5)
o0 o0 Q

® Self-consistency condition A(x)=2rkpTg(x)) sinf(z)

® Boundary conditions 0’ |surface = O, o, RpH = sin(fy —0_)
K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970). _ I /
M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988). 0(00) — 0007 O-”g— sV,

It is convenient to define the following
\dimension/ess parameters:
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Theoretical tool

We use the quasiclassical theory in the diffusive limit-
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(Usade/ equation &0 =—x—cosb+—sinf & =hD; 20 (j = NB

® Self-consistency condition A(x)=2rkpTg(x)) sinf(z)

® Boundary conditions 0’ |surface = O, o, RpH = sin(fy —0_)

K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970). ( ) _ o 9/ — O 9’
M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988). 0 x0) = 0007 nY— sY0

It is convenient to define the following
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Theoretical tool

We use the quasiclassical theory in the diffusive limit-

A hw, NN
(Usade/ equation &9 = — 5 cosf+ AL sinf & = hD;2A (j =N, S)

® Self-consistency condition A(x)=2rkpTg(x)) sinf(z)

® Boundary conditions 0’ |surface = O, o, RpH = sin(fy —0_)

K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970). ( ) _ o 9/ — O 9’
M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988). 0 x0) = 0007 nY— sY0

It is convenient to define the following
dimensionless parameters:

a =——=0.05 (whend = 1nm, (&, = 20nm, and N,, = N;)
Ns S

4e? _ 16d Rgp _ Rp (whend = 1nm,
§o RgA2 10714am?  §o =40nm)

For example, R; of YBCO/Ag obtained in [J. W. Ekin et al., Appl. Phys. Lett. 62, 369 (1993)]
is Rz~ 10'13-1012Om2, which yields B~10-100.

IB —_ TRBNnAd

16



Theoretical tool

We use the quasiclassical theory in the diffusive limit-

A h

(Usade/ equation &0 =—<—cosf+ AL sinf & = VhD; 20 (j = NB
>0 O Q

® Self-consistency condition A(x)=2rkpTg(x)) sinf(z)

Wn

® Boundary conditions 0’ |surface = O, o, RpH = sin(fy —0_)
sadel, s. Rev. Lett. 25, . _ r /
E.DY'UL.JKudprliaiz\\//aer v.LF.ttLui?chSeovTéi?:giws.JETP 67, 1163 (1988). 0(00) - 0007 0-”9— = OsUp,
It is convenient to define the following N, d 4e2
\dimension/ess parameters: Q= N ﬁ_s p= 7RBNnAd»
S

Normal and anomalous _
Quasiclassical Matsubara Green functions G = cos 6 F =sinf

T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
» Penetration depth
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Theoretical tool

We use the quasiclassical theory in the diffusive limit-

A h n . '
(Usade/ equation 532-9” N cos 0 + Aw sin 6 & = hDj2A (5 = @

Q
® Self-consistency condition A(x)=2rkpTg(x)) sinf(z)

® Boundary conditions 0’ |surface = 0, onRp0_ =sin(fy — 0_)

K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970). ( ) . o 91 — O !/
M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988). 9 x0) = 0007 nY— sY00

It is convenient to define the following
dimensionless parameters:

Normal and anomalous _
Quasiclassical Matsubara Green functions G = cos F =sinf
T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
» Penetration depth
Retarded normal and anomalous
R __ R __ _:
» Quasiclassical Green functions G = cosh6 F** = sinh 6

» Density of states and surface resistance
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Density of States
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Taking into account a finite quasi particle life time
(¢ > e+ il') smears out the cusps-
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DOS for the right figure (S5C with a surface layer of

gradually reduced BCS pairing constant) can also be calculated-
6 . l .

)/

0 0.5 1 1.5 2
e/ A

FIG. 2. Density of states at the surface calculated for ¥ = 0.2
and I' = 0.01 (red line). The blue line shows DOS in the bulk. 2



Temperature dependence of
penetration Depth



Without subgap states

1 7T,UJ0A tanh A
5 — all
)\2 prS 2]€BT

Exponential T dependence at any temperature
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Without subgap states

1 7T,UJ0A tanh A
5 — all
)\2 prS 2]€BT

Exponential T dependence at any temperature

Effect of subgap states

1 2mA [ A mLTTA
Ei— { _
v . an”" = 312 £ A7) T <71,

quadratic T dependence at a low temperature
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Surface Resistance

(7)ldeal surface without subgap states
(2)ldeal surface with subgap states
(3)normal thin layer on the surface
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As T decreases, a number of quasiparticles
exponentially decrease-

A
R, o e kT
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As T decreases, a number of quasiparticles
exponentially decrease-
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Surface Resistance

(2)ldeal surface with subgap states
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Even at T—0, quasiparticles can be excited by the
microwave field when finite subgap states exist-

states states
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FIG. 7. Arrhenius plots for Rs(7T) calculated from Eq. (82)-
(83) for hw = 0.01A and I'/Ap = 0.01, 0.03 and 0.06. Here
Ry = ug\>wA/2hps, the temperature dependencies of A and
Aat T < T./2 are neglected, and A(T") is given by Eq. (20)




As T increases, the |
residual resistance R;
Increases-
c 10
w
o
107
R | | | , , :
4 6 8 10 12 14 16

AykgT

FIG. 7. Arrhenius plots for Rs(7T) calculated from Eq. (82)-
(83) for hw = 0.01A and I'/Ap = 0.01, 0.03 and 0.06. Here
Ry = ug\>wA/2hps, the temperature dependencies of A and
Aat T < T./2 are neglected, and A(T") is given by Eq. (20)




At this region, R, _
decreases as I' increasé
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FIG. 7. Arrhenius plots for Rs(7T) calculated from Eq. (82)-

(83) for hw = 0.01A and I'/Ap = 0.01, 0.03 and 0.06. Here

Ry = ug\>wA/2hps, the temperature dependencies of A and
Aat T < T./2 are neglected, and A(T") is given by Eq. (20)




Why does R, decrease as T increases?

A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014)
A. Gurevich, Supercond. Sci. Technol. 30, 034004 (2017)

Since
Rs~fde N(e)N(e + hw)e ¢/kT

we have

kT
RS X ln%
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Why does R, decrease as T increases?

A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014)
A. Gurevich, Supercond. Sci. Technol. 30, 034004 (2017)

Since
Rs~fde N(e)N(e + hw)e ¢/kT

we have

kT
h.a)

R, « In
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Why does R, decrease as T increases?

A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014)
A. Gurevich, Supercond. Sci. Technol. 30, 034004 (2017)

Since
Rs~fde N(e)N (e + hw)e /KT

we have
kT
R, < In— R, < In—
| r 35F
r_, JF_ i
- Jgmom e

DOS broadening can reduce R,
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At this region, R, e
decreases as I' increases: |
This comes from DOS

\ broaden/ng [A. Gurevich, Phys. Rev.
NGt 113, 087001 (2014

10
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FIG. 7. Arrhenius plots for Rs(7T) calculated from Eq. (82)-

(83) for hw = 0.01A and I'/Ap = 0.01, 0.03 and 0.06. Here

Ry = ug\>wA/2hps, the temperature dependencies of A and
Aat T < T./2 are neglected, and A(T") is given by Eq. (20)




Surface Resistance

(3)normal thin layer on the surface

As seen in the above,
DOS s broaden due to proximity effect-
Thus we can expect R, can be reduced by the same
mechanism as before: R, reduction by the broadening of DOS
peak:
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Even at T—O0, quasiparticles can be excited by the
microwave field when finite subgap states exist:



S N S

Even at T—O0, quasiparticles can be excited by the
microwave field when finite subgap states exist:

~ 2
R, — 1 2N, [ I? N al?(A+ v A% 4 T?) ]
0 A2_|_F2 (AQ—|—52F2)(A2—|—F2)—|—2BF2A‘/A2‘|‘F2

2
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R, as functions of T

I =0.01A (a)

-4 | ]
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A/kBT

FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.



R, as functions of T

-— Similar as the ideal

-4 . I ;
107 . . .y Surface with subgap
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FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.
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R /R

R, as functions of T
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FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.
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—

R, as functions of T

109 ' f
I'=0.01A (a) | N and S are decoupled-
- The residual resistance
107" ¢ //’s given by normal N-
=30
01072 ¢ 4 3
1 = The slope is changed to
/ that corresponding to
107 ¢ : the minigap
" 0.1
&= Similar as the ideal
-4 L | . R
107 . . .y Surface with subgap
AlkgT states

FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.
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R, as functions of T

Extrapolating the results
obtained in a limited

| temperature window may

| lead to a wrong conclusion.

. e.g At A/KT < 10, the
| curves for f=4 and 30 are
| nearly the same: the
| traditional fitting based on
|R:=R\g*R; would suggest Ri
1074 ' ' at B=30, while their actual
5 10 15 20
Ak, T T dependence are much

different at a lower T.

FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.
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R, as functions of T

I'=0.01A (a)

5 10 15 2( 6 8 10 12 14
AT AT

FIG. 10. Arrhenius plots calculated from Eqs. (79)-(81) for
a = 0.05, A = d€g, hQ = 11A, Dy, = D, /3, 8 = 0.1, 2, 4, 30,
and (a) ' = 0.01A, (b) I' = 0.05A. Here R1 = pudw?£sA?/2ps.



as functions of f3

/_\/kBT =4

= 0.03

(a)

0.2

0.4 0.6

0.8

0
6]
1.4 r
AkgT = 12 (c)
1351

.35

1.3
1.25f
o
w
T 12]
=)
o115}
1.1}

1.05+

1.13

(b)

for different T

0 0.2 0.4 0.6 0.8 1

B

1121

AlkgT =20 (d)

0.03

0 0.2 0.4 0.6 0.8 1

65



The minimum in Rs(B) mainly results from
interplay of two effects:

The first effect which causes Rs to increase with
B is rather transparent: as the barrier
parameter [ increases the proximity-induced
superconductivity in N layer weakens, so the RF
dissipation and Rs increase-

0 B
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AkgT =12 (c) AT =20 (d)
1.35§ ‘ 112}
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The minimum in Rs(B) mainly results from
interplay of two effects:

The first effect which causes Rs to increase with
B is rather transparent: as the barrier
parameter [ increases the proximity-induced
superconductivity in N layer weakens, so the RF
dissipation and Rs increase-

The second effect which causes the initial
decrease of Rs with B results from the change in
DOS around N layer- A moderate broadening of
the gap peaks in N(c) eliminates the BCS
logarithmic divergence at w—0 and reduces Rs -

1.1

~— - =
115+ 1
1.07 0.03
0 0.2 0.4 0.6 0.8 1 0 0:2 0.'4 OI.6 o.ls 1
3 3




R, as

functions of 3
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1.12 .
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Taking d=1nm,

B /s

This is two orders of magnitude smaller than the lowest contact resistance of YBCO/Ag
[J. W. Ekin et al., Appl. Phys. Lett. 62, 369 (1993)]
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Surface Resistance

Bulk magnetic impurities

We will see broadening of DOS peak due to magnetic
impurities can also reduce R,:



We use the quasiclassical
theory in the diffusive limit
(Usadel eq-)-

esinh @ + i, cosh @ sinh § = A cosh 6
G = cosh @ F = ginh 6

A:A—grp, I, <A
- hvg
=T
24,

¢, : mean spacing of
magnetic impurities

Magnetic impurities
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The surface resistance can be reduced by an
appropriate density of magnetic impurities!
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Summary



Summary

® The main broadening effect can occur in a layer much
thinner than A: DOS in the bulk can be much sharper than
the surface:

® Tunneling surface probes such as STM do not give all
information about DOS in xS A-

® Fitting the tunneling data of DOS with Dynes formula and
extracting I' to describe the low-T surface impedance Z
can be misleading- A combination of tunneling measurement
and Z in a sufficiently broad T range may offer a
possibility to separate the surface and bulk contributions-
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Summary (cont-)

® A thin pairbreaking layer or a weakly-coupled normal layer
at the surface can radically (by orders of magnitude)
increase R. as compared to an ideal surface with only bulk
broadening mechanisms:-

® However, R (T) can be reduced by optimizing DOS at the
surface by tuning the properties of a proximity-coupled N
layer at the surface- [B<1 corresponds to Ry< 1.8%101*Qm? for
Nb with d=Tnm normal layer]
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Summary (cont-)

® /ntroducing a tiny density of magnetic impurities (€,~um
for Nb) leads to moderator broaden DOS and reduces Rs-
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Backup
Units of temperature and surface resistance

for Nb case
kgT T
A~ 175K
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R, = Ko wA~1()—4Q (Slide 48)
2hpg
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R, = Fo Ss ~10770Q (Slide 59)
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