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Recent advances in SRF cavity performance pose
theoretical challenges

+ Recent advances In surface treatments have increased both Q-factor and
the quench field of SRF cavities

* Polishing modifies surface roughness

* Doping introduces impurities in a semi-controlled way

+ What is the dominant mechanism which enhances SRF performance?

* [heoretically this Is a challenging problem which may involve more than one
mechanism in the non-linear regime (strong fields)

+ We study the effect of iInhomogeneous impurity density in an impurity
diffusion layer

see, e.qg., Gurevich, Supercond. Sci. Technol. (2017)



Type-l and Type-ll superconductors
Meissner: weak dissipation; Vortex: strong dissipation
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Hsh IN a theorist's cavity
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What we assume

Zero temperature — SRF cavities are cooled to 2K (0.20-0.257¢)

Static field — RF field in cavities iIs1-10GHz, still much smaller than
the gap frequency (100 times larger)

Born scattering — \Weak scattering from point-like impurities

Local limit (extreme Type-Il imit) — This simplifies the calculations
obut Nb I1s not extreme Type-I|



Quasiclassical transport equations

Spectral channels encode

A A ~R,A A~R,A . ~R,A
excitation spectrum [573 et 0 8 }o T IVE Vg =0
Keldysh channel encodes (57—3 — Oext — 0 ) °E — & (57—3 — Oext — 0 )
spectrum and occupation JrgR o 6K _ 5K Og v ng 0
Normalization conditions ghA o gRA = 721, gRogh —ghog” =0

4x4 matrix propagators depend ~RAK 2R
on Fermi vector, energy, position and time & — 8



Selt-energies encode interactions
Fermionic pairing and impurity scattering

Spectral channels encode
excitation spectrum
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Keldysh channel encodes (573 — Oext — O ) °E —& © (€T3 — Oext — 0 )
spectrum and occupation i g o 6K — 6K o g v V g —0
Self-energies encode FRA — A 5RA 5K — 5K
interactions mf IR imp
s-wave gap equation Impurity self-energy
K 5 R,A K *R,A K
A \/O <f (pf,€)> |mp (pf E) — nlmpt (Pf,Pf, )
Off-diagonal Keldysh propagator Single-impurity t-matrix

(occupied pair spectral func.)



Coupling to electromagnetic fields

Spectral channels encode A A ARA ARA .5 S aARA
excitation spectrum [873 Oext =0~ & ]o tive-VgTT =0
Keldysh channel encodes (573 — Oext — 0 ) °E — & © (€T3 Oext — 0 )
spectrum and occupation _|_§R o 6K — 6K o §A v ng —0
EM coupling in terms of 5. — _5‘7 AR = . BLA
vector potential A or SF momentum ps ext — = Y 3 = Vf PsT3
. _ 2
Maxwell’s equation for vector potential _v2._ 1 0 /T( S t) = 4_7T—>(F—é )
(divA = 0 & no charging) 2 12 R JUY,

Current computed from - o de . P -
diagonal Keldysh propagator J(R1 t) — 2fo Arri <er,ﬁfg (Pf, £ R, t)> .
(occupied spectral function) pf



Coupling to electromagnetic fields

Spectral channels encode A~ A~  ARA aRA .- S ARA
excitation spectrum [873 Oext =0 & ]o +1Ve- Vg =0

AN N /\R /\K /\K A phl ’\A
Keldysh channel encodes (573 — Oext — 0 ) °E —& © (57-3 — Oext — 0 )
spectrum and occupation LR AK _aK J3A | ;2 vsK — 1
EM coupling in terms of Transport equations & Maxwell’'s equation
vector potential A or SF momentul  must be solved simultaneously!
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Maxwell’s equation for vector pote w2 10 5 o\ 4_7T =
(divA = 0 & no charging) ( V© - c2 Ot2 A(R' t) T C J(R1 t)

Current computed from - o de . P -
diagonal Keldysh propagator J(R1 t) — 2fo Arri <er,ﬁfg (Pf, £ R, t)> .
(occupied spectral function) Pf



Extreme type-ll SC under static surface field

Extreme type-ll — ¢ <« A

& — coherence length scale (propagators variation length scale)

A — London penetration depth (B-field variation length scale)

Propagators do not ‘see’ B-field variation — vy - Vg4 =0

Static B field
Occupation function is the equilibrium Fermi function
Keldysh propagator g = (g™ — ") tanh %=

Spectral propagators computed from

(&= Ve po)fs = 677,877 + ive g7 =0



mpurity infusion results in diffusion layer

What is the effect of diffusion layer on superheating field?
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Effect of |mpur|ty densﬂy at surface
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Effect of diffusion length
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Conclusions & outlooks

* Inhomogeneous impurity profiles can lead to superheating fields that
are higher than homogeneous profiles

o Diffusion layers are not only an experimental fact — they could play
an important role in understanding SRF cavity performance

* We only explore the relatively easy limit of extreme type-ll SC — we
expect richer physics in the more realistic non-local, dynamic case
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Lin & Gurevich, PRB (2012)

effects of impurity density at surface
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effects of diffusion length

clean

dirty

I Yo/Ao =1

<

constant imp
maximum

L Yo/Ao =2

L Yo/Ao =4

less homogeneous

scattering rate

’Y(X) — Yo€

—x/¢



