BCS parameter determination of Nb/Cu cavities

A. Miyazaki CERN and University of Manchester

TTC topical meeting 2017 @ Fermilab

CERN SRF cavities: Nb film (a few $\mu m)$ on Cu

DC-magnetron sputtering

Several advantages compare with bulk Nb

- No global quench ($\kappa_{Cu} = 400 \text{ W/mK}$)
-) Mechanically stiff
- iii) Cheaper raw material
- iv) Insensitive to the external magnetic field

Mechanically, thermodynamically, and economically better than bulk Nb!

How about the superconducting properties?

Use HIE-ISOLDE project data for systematic analysis ²

FIB-SEM cross section imaging

FIB-SEM cross section imaging

Fine grain structure ($<< 1\mu m$)

→ Parameter determination without literature of clean bulk Nb

Material parameters

- 1. BCS coherence length ξ_0
- 2. London penetration depth λ_L
- 3. Mean free path *l*
- 4. Coupling Δ_0/k_BT_c
- \rightarrow Based only on experimental results and BCS theory

	h. In 1	S.111	9	i dan				a state
1 µm	1.85 kV, EsB	e2	1 µm	1.85 kV, EsB	e7	1 µm	1.5 kV, EsB	e9

RF data fitting by BCS impedance

Theoretical calculation

 $\begin{bmatrix} \text{Surface resistance } R_{BCS}(T; \xi_0, \lambda_L, l, \Delta_0/k_BT_c) \\ \text{Effective penetration depth } \lambda_{BCS}(T; \xi_0, \lambda_L, l, \Delta_0/k_BT_c) \end{bmatrix}$

Experimental data

 $\begin{cases} Surface resistance R_{data} = R_s(T) - R_{res} \\ Shift in resonance frequency \Delta f(T) \propto \Delta \lambda(T) \end{cases}$

$$\frac{\chi^2 \text{ to be minimized}}{\chi_{R_s}^2 = \sum_{j=1}^{n_{R_s}} \left[\frac{R_{BCS}(T_j) - R_{data}(j)}{\sigma_{R_s}(j)} \right]^2 \qquad \qquad \chi_{\lambda}^2 = \sum_{j=1}^{n_{\lambda}} \left[\frac{\Delta \lambda_{BCS}(T_j) - \Delta \lambda(j)}{\sigma_{\lambda}(j)} \right]^2$$

RF data fitting by BCS impedance

Correlation among parameters \rightarrow Simultaneous fit required Example: 4D hyper-surface \rightarrow 2D cross-section in $\xi_0 - \lambda_L$ plane ($l = 99 \text{ nm}, \Delta_0/k_BT_c = 1.7$)

Aid by Merged χ^2

 (ξ_0, l) is still strongly correlated $\chi^2_{R_s}(\xi_0,l)$ $\chi^2_{R_s+\lambda}(\xi_0,l)$ $\chi^2_\lambda(\xi_0, l)$ ້ 110² ໂມ ເມ 40 ໂມ ພິ 40 ພິ 35 ∼×ີ⊑ 10³⊆ 40 ∼× 10³ Valley of solutions ·n Valley of solutions alley of solutions 35 35 30 30 10² 30 10² 25 25 25 10 20 20 20 10 10 15 15 15 10 10 10 50 100 150 50 100 150 50 100 150 I [nm] I [nm] I [nm]

Surface resistance and penetration depth depend similarly on (ξ_0, l)

- \rightarrow Merged χ^2 does not help to confine the fitting parameter
- → RF surface impedance measurement cannot determine parameters
- → An independent observable is necessary

$B_{c2}(T) \rightarrow \xi_{GL}(T) \rightarrow (\xi_0, l)$ by BCS-Gor'kov

Ginzburg-Landau theory gives

 \rightarrow From the fitted slope another constraint on (ξ_0, l) was obtained for arbitrary impurity

L. P. Gor'kov, JTEP, 9, 1364 (1959). T. P. Orlando, et al., Phy. Rev. B 19, 4545 (1979).

Combination of RF measurement and magnetometry

BCS fitting of RF impedance and B_{c2} by BCS-Gor'kov are complementary 12

Discussion weak 40

15-**PCT** result Δ = 1.34 ± 0,5 meV 10-0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1 Δ [meV]

 RF + magnetometry fitting showed weak Δ₀ averaged over the cavity surface
Direct but local measurement of Δ₀ by Point Contact Tunneling (PCT) showed broad histogram of Δ₀ and even zero gap states
The HIE-ISOLDE film may have some issues

DC-bias sputtering Coating parameter Geometry

- Contamination
- The worst performed cavity showed even lower Δ_0
- A rather huge (2mm) feature found on the inner antenna after the chemistry (degreasing, SUBU)
- Contamination to the film?

Toward understanding of the Q-slope problem

Summary

- The surface impedance of the HIE-ISOLDE cavities were fitted by BCS theory
- Strong correlations among the material parameters were pointed out and partially eliminated by simultaneous fitting of surface resistance and penetration depth
- The upper critical field measured provided another constraints with BCS-Gor'kov theory
- The material parameters were determined and well fitted the data
- Physics interpretation is important especially because systematic study for Q-slope is desired

backup

Surface impedance Z_s : non-equilibrium statistical physics

A definition of surface impedance

$$Z_{s}(\omega, T, E) \equiv \frac{E_{x}(z=0)}{\int_{z=0}^{\infty} J_{x}(z')dz'}$$

= $\frac{E_{x}(0)}{H_{y}(0)}$ From Ampere's law
H_y(z) = $\int_{z}^{\infty} J_{x}(z')dz'$
From Ampere's law
H_y(z) = $\int_{z}^{\infty} J_{x}(z')dz'$
boundary condition

Definition of surface resistance and reactance $\lim_{z \to \infty} |J(z)| = 0$ $\equiv R_s + iX_s$

Averaged R_s can be obtained by cavity quality factor Q_0 and geometrical factor G $\overline{R_s} = G/Q_0$

Magnetization M(B) measurement by SQUID

The upper critical field $B_{c2}(T)$ is a precise observable by M(B) measurement (thermodynamical critical field $B_c(T)$ and lower critical field $B_{c1}(T)$ are less precise) 19