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MOTIVATION

 Replace expensive Nb bulk cavities with coated copper ones 
 Copper cavities offer high thermal conductivity at low temperature, which should 

greatly help to increase the stability of the cavity against breakdown.

 Nb coated copper cavities are successfully used in CERN ( LEP, LHC and HIE-
ISOLDE machines).

 Replace Nb thin films with superconductor with superior 
parameters (A15 intermetallic compound)

Proposed solutions to achieve desired characteristics and operational 
cost reduction for SRF application using A15 materials:
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WHY Nb3Sn?

 High critical temperature 

 Low BCS resistance

 Stoichiometry control (Sn At% 19-26 %)

 Requires high temperature treatment

 Limited range of annealing temperatures

 Substrate importance 

Advantages Challenges
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Nb ~ 9.3 K

RBCS
@ 4.2K and 500MHz  

Nb3Sn ~ 0.4 nΩ
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[1]   J. Charlesworth, I. MacPhail, and P. Madsen, J. Mater. Sci. 5, 580 (1970).

Binary phase diagram of the Nb-Sn system [1]
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SAMPLE PREPARATION BY MAGNETRON SPUTTERING
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SAMPLE PREPARATION BY MAGNETRON SPUTTERING

Compulsory Annealing
Annealing temperatures 600 - 800oC

Annealing time 24 h… 72 h

Coating temperatures 600 - 735oC

Alternative Additional Annealing 24 h… 72 h

Alternative Annealing

Reacted During CoatingReacted After Coating

Coating parameters:

Coating gas: Ar or Kr

Coating pressures:
7·10-4 mbar … 5·10-2 mbar

Composition: 
Sn 20 At% to 27 At%,
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FILMS REACTED AFTER COATING

A15 phase formation. XRD analysis & Morphology
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CRACKING OF THE FILMS AFTER ANNEALING

T annealing = 700oC T annealing = 750oC T annealing = 700oC

Without solving “cracking” problem not RF compatible

100 µm 10 µm 20 µm
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CRITICAL TEMPERATURE 
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How to increase Tc?
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 Composition

 Films of Nb3Sn on copper substrate

 Reacting AFTER /DURING coating

 High temperature treatment duration

 Additional Annealing

How to increase Tc?
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IMPACT OF THE SUBSTRATE CHOICE ON TC TRANSITION

 Increase of the Tc on 2-4K 
for the films grown on 
ceramic substrates (Al2O3)

 Sharper transition for Nb3Sn 
synthesised on ceramics

Best Tc 
on copper ~ 16 K

on ceramic (Al2O3) ~ 17 K
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How to increase Tc?
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COPPER SUBSTRATE “CHALLENGE”
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COPPER SUBSTRATE “CHALLENGE”

 Nb and Sn
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 High temperature 
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SOLUTION: INTERMEDIATE LAYER

 Works as “buffer” layer to reduce residual stresses in the films (to solve cracking problem for the films 
reacted AFTER the coating)

 Decrease lattice mismatch, i.e. improving crystalline lattice order (to avoid Tc depression) [3]

 Diffusion barrier layer (to prevent copper interdiffusion into Nb3Sn layer)

Possible candidates – Nb, Ta,  Al2O3

37

[3] Hein. The A15 story. The Science and Technology of Superconductivity pp 333-372

https://link.springer.com/book/10.1007/978-1-4684-2997-8
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MICROSTRUCTURAL PROPERTIES 
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Microstrain (a.u.)

 Calculated values from broadening 
of the diffraction lines using Rietveld 
analysis [4].

 Only samples reacted AFTER the 
coating were taken into 
consideration. 

 Uniform residual stress is released 
but impact of microstrain remains 
important.

 Dependence of critical temperature 
on microstrain in the films is 
established.
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[4] L. Lutterotti, S. Matthies and H. -R. Wenk, MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more, Proceeding of the Twelfth International Conference 
on Textures of Materials (ICOTOM-12), Vol. 1, 1599, 1999.



SUMMARY

 We are able to produce high quality films (good composition, crack-free surface, Tc on ceramic ~ 17.2 K 
and on copper ~ 16 K)

 Impact of the copper substrate, i.e. increasing in disorder degree and copper interdiffusion after annealing,  
can be minimised by using intermediate layer. 

 The recipes for the synthesis applicable for RF applications using both producing routes (reacting AFTER
and DURING coating) will be produced. 

 Coating of the QPR sample in order to test RF properties of the film is planned for the beginning of the 
next year.
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Thank you for your attention!
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Difference in thermal expansion coefficient between substrate 
and Nb3Sn contribute to disordering effect.

Element α (x 10-6) K-1

Cu 16.8

Ta 7.64

Nb 7.02

Nb3Sn 6.3
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From this expression one sees that a large 
N(0), implies a large Tc. 
The BCS interaction parameter, V*, is 
approximately a constant. [5]

[5] SUPERCONDUCTING INTERMETALLIC COMPOUNDS - THE 
AIS STORY. Robert A. Hein. U. S. Naval Research Laboratory 
Washington, D. C. 20390

W. D. Gregory et al. (eds.), The Science and Technology of Superconductivity
© Plenum Press, New York 1973

"A15 phases." McGraw-Hill Concise Encyclopedia of 
Physics. 2002. The McGraw-Hill Companies, Inc. 3 Nov. 
2017 
https://encyclopedia2.thefreedictionary.com/A15+phases

𝑇𝑇𝑐𝑐 ≃ 𝜃𝜃𝐷𝐷 𝑒𝑒−(1/N(0)·V*)

In BCS theory:

θD – Debye temperature
N(0) – density of state at the Fermi surface
V* - interaction between electron and lattice vibration

↓d ⇒ ↑ N(0)
d – interatomic distance 
between Nb atoms

↑ N(0) ⇒ ↑ Tc

https://encyclopedia2.thefreedictionary.com/A15+phases
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