Growth Of MgB₂ Films On Cu For SRF Cavities

Argonne NATIONAL LABORATORY Wenura Withanage

Advisor – Prof. Xiaoxing Xi

Outline

- Superconducting MgB₂
- Motivation & Goal
- Hybrid physical chemical vapor deposition (HPCVD) of MgB₂ at Temple University
- MgB₂ growth on metal substrates
- MgB₂ growth on 2" sapphire wafers
- MgB₂ deposition on 2" Cu discs and characterizations
- Coating of MgB₂ on inner walls of Cu tubes with the diameter similar to the diameter of beam tube of a 3 GHz RF cavity
- Summary and Next steps
- Publications and acknowledgement

Superconductivity in MgB₂

- Discovered in 2001
- High transition temperature(Tc) ~39 K
- Absence of weak links at grain boundaries
- High thermodynamic critical field
- Has a hexagonal structure

Zeng et.al., Nature Materials, Vol.1, 2002

Hexagonal structure

Motivation & Goals

Motivations

- ▶ MgB₂ is one of the most promising superconducting material for SRF applications
- MgB₂ coated Cu cavities will have high thermal conductivity
- Less expensive alternate for commonly used Nb bulk cavities

Goals

- ▶ Developing a recipe to grow MgB_2 on large area Cu discs \square
- > RF characterization of the MgB_2 coated Cu discs \square
- Coating MgB₂ on the inner walls of a 3 GHz Cu cavity
 - □ Coating of Cu tubes with diameter close to beam pipe of a 3 GHz cavity
 - \Box Characterization of the coated tubes \checkmark
 - Evaluation and modification to the coating setup
 - □ Coating of 3 GHz Cu cavity with MgB₂

HPCVD of MgB₂ at Temple University

<u>Pressure</u> – Temperature phase diagram for Mg – B system

Figure 1. The pressure–temperature phase diagram for the Mg:B atomic ratio $x_{Mg}/x_B \ge 1/2$. The region marked by 'Gas + MgB₂' represents the growth window for MgB₂ films (from [2]).

Liu Z K, Schlom D Ø, Li Q and Xi X X 2001 Thermodynamics of the Mg–B system: implications for the deposition of MgB2 thin films *Appl. Phys. Lett.*

MgB₂ growth on metal substrates using HPCVD

- MgB₂ was grown on metal substrates
- Deposition temperature ~ 700 C
- 300 nm MgB₂ were grown
- Tc ~ 39 K

Mg readily reacts with Cu at high temperature $MgCu_2$ and Mg_2Cu

Materials	Reaction with Mg	Melting point
Niobium [8]	Stable	2477
Molybdenum [8]	Stable	2623
Tantalum [8]	Stable	3017
316 stainless steel [10]	Stable	1375-1400

MgB₂ film growth on 2" ceramic substrates

- HPCVD setup was scaled up to accommodate 2" substrates
- 2" sapphire discs were coated successfully
- Tc ~ 39 K

MgB_2 deposition on 2" C u discs

Challenges in growing MgB₂ on Cu

- Mg vapor reacts and forms alloy with Cu starting around 450 C at 10 Torr (Copper surface color changes to silver)
- Mg vapor pressure is low at low temperatures
- Coating whole 2" area uniformly challenging
 Scaling up for 2" Cu discs and reducing
 the growth temperature
 - HPCVD system is modified to accommodate thick 2" Cu disc
 - Deposition conditions were optimized for Cu substrates

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

(a) Schematic diagram of the modified HPCVD setup to accommodate 2 inch diameter Cu discs. (b) Photograph of the sample holder containing 2 inch Cu disc and Mg pellets placed on the heating element. (c) Photograph of the sample holder containing the Mg pellets and Cu disc with the Mo cap. (d) Photograph of a regular HPCVD setup for small substrates.

Role of Mg-Cu alloy on the growth of MgB_2 on Cu

Types of Mg-Cu alloy

• Mg₂Cu – Promotes MgB₂ growth at low temperature

• MgCu₂

Helpful nature of Mg2Cu at low temperature

- Mg₂Cu has been used as the Mg source for MgB₂ growth in powder in tube method in early studies of MgB₂-Cu mixed wires
- Same behavior observed in MgB₂-Cu tape research

(a) XRD θ -2 θ scans for Cu, Mg on Cu and MgB₂ film on Cu for 2 θ from 34° to 41°. (b) XRD θ -2 θ scan for a MgB₂ film on Cu for 2 θ from 20° to 60°.

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

Cross-sectional studies of MgB₂ coated 2" Cu discs

MgB₂ coating on Cu

- Fairly uniform coating
- Conformal coating
- Thick (~ 3 6 µm) alloy layer underneath the MgB₂ layer
- Mg-Cu alloy incursion into the MgB₂ layer observed in area 3

(a) Optical image of a MgB_2 film on a Cu disc. (b), (c) and (d) SEM images of the FIB fabricated cross sections from three different areas. The area inside the yellow color box in (d) was used for the EDS elemental mapping shown in figure 4.

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

Cross-sectional and elemental studies of MgB_2 coated 2" Cu discs

(a) SEM image of the EDS elemental mapping area; (b) EDS signal from the Pt M α 1,2 line; (c) EDS signal from the Mg K α 1,2 line; and (d) EDS signal from the Cu L α 1,2 line.

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

SEM image of the FIB fabricated cross section of a MgB₂ film grown on a Cu disc with Pt layer, MgB₂ layer, MgCu₂ alloy layer and bulk Cu. The black lines were drawn along the interfaces for illustration purposes.

Surface morphology of MgB2 films grown on Cu discs

(a) SEM image of the MgB₂ film surface on a Cu disc. (b) Zoomed in SEM image.

DC superconducting properties

Magnetic moment versus temperature curve of a 650 nm thick MgB_2 film on a Cu disc.

Critical current density versus applied magnetic field curves of a 650 nm thick MgB_2 film on a Cu disc at 5 and 20 K. The magnetic field was applied perpendicular to the film surface.

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

- High *T_c* ~ 37 K
- High $J_c \sim 10^7$ A cm⁻²

13

RF properties

- RF characterizations were carried out using a cryogenic high-Q hemispheric cavity with a TE032-like mode at 11.4 GHz at SLAC National Accelerator Laboratory
- T_c of the MgB₂ films measured ~ 37 K
- Samples showed Q close to the reference Nb disc
- Q of MgB₂ and Nb cross-over at 6.2 K observed.

Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)

(a) Quality factor versus temperature curve of a MgB₂ coated Cu disc measured in a Cu cavity. (b) Quality factor versus temperature curves for a MgB₂ coated Cu disc, a Nb reference sample, and a Cu reference sample, measured in a Nb cavity.

MgB₂ coating on inner wall of Cu tubes with diameter similar to a 3 GHz cavity

(a) A photo of the HPCVD system for cavity coating is shown here. (b) The schematic of the system with the Cu tube at the starting position. (c) Schematic of the system with the Cu tube at the end position.

Cu tube ID - 1.495" OD - 1.625"

- Thermally insulated, water cooled $\rm B_2H_6$ gas line from the top (T < 300 °C)
- Mg oven in the center ~ 600 °C
- Outside tubular heater ~ 660 °C
- Deposition pressure 5 Torr
- B_2H_6 flow rate 20 sccm

Vithanage et al., Phys. Rev. Accel. Beams, 0.102002 (2017)

15

Characterizations of MgB₂ coated Cu tubes

550 nm thick MgB₂ coating

Withanage et al., Phys. Rev. Accel. Beams, 20.102002 (2017)

Characterizations of MgB₂ coated Cu tubes

850 nm thick MgB₂ coating

(a) Photo of \sim 850 nm thick MgB₂ coated Cu tube halves. (b)–(e) SEM images of MgB₂ film surface on Cu sample cut out from regions 2, 3, 4 and 5, respectively. Magnetic moment vs temperature curves of samples from regions 2, 3, 4 and 5 of a \sim 850 nm thick MgB₂ coated Cu tube.

Withanage et al., Phys. Rev. Accel. Beams, 20.102002 (2017)

Cross-sectional studies

- Poor coating in the region 2

 Similar coating was observed in the center of the 2-inch discs
 - Indication of Mg deficiency
- Region 3 to 6, fairly uniform coating with occasional voids thickness ~ 850 nm
- These voids can be due to the unpolished Cu surface or overlapping of large MgB₂ grains

(a)–(c) Cross section images of samples cut out from regions 2, 3 and 6, respectively, of a \sim 850 nm thick MgB₂ coated tube. (d) Zoomed in cross section image from region 3.

Vithanage et al., Phys. Rev. Accel. Beams, 20.102002 (2017)

18

MgB_2 on polished Cu plugs attached to the Cu tube

MgB₂ on polished Cu plugs attached to the Cu tube Plug #1 Plug #1

 Plug # 1
 Plug # 4

 * <u>\$102737</u>
 <u>b0</u>
 <u>b0</u>
 <u>b0</u>
 <u>S0</u>

 * <u>\$102737</u>
 <u>b0</u>
 <u>b0</u>
 <u>S0</u>
 <u>S0</u>

 * <u>\$102747</u>
 <u>b0</u>
 <u>b0</u>
 <u>S0</u>
 <u>S0</u>

 * <u>\$102747</u>
 <u>b0</u>
 <u>b0</u>
 <u>S0</u>
 <u>S0</u><

20

SUMMARY

- We have successfully developed a MgB₂ growth process on Cu without using buffer layers at low temperature
- MgB₂ coated Cu discs showed excellent DC superconducting properties with high T_c (~37 K) & high J_c (10⁷ A cm⁻²).
- ▶ MgB₂ coated Cu discs showed high Q close to the reference Nb discs.
- The growth process was scaled up to accommodate 3 GHz cavity and coating of the inner wall of Cu tubes with diameter similar 3 GHz RF cavity was tested
- MgB₂ coated Cu tubes showed Tc close to 37 K in thick films and the coating was uneven along the length of the tube.

FUTURE WORK

- Modification of the coating system to reduce the temperature variation along the length
- Coating Cu tubes with diameter similar to the equator of a 3 GHz RF cavity

PUBLICATIONS

 Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical-chemical vapor deposition
 Withanage et al., Supercond. Sci. Technol. 30, 0450016 (2017)
 Magnesium diboride on inner wall of copper tube: a test case for superconducting radio frequency cavities
 Withanage et al., Phys. Rev. Accel. Beams, 20.102002 (2017)

ACKNOWLEDGEMENT

- 1. X. X. Xi, N. H. Lee, T. Tan and M. A. Wolak at Temple University
- 2. A. Nassiri at Argonne
- 3. P. B. Welander at SLAC
- 4. G. Eremeev, F. Hannon and Robert Rimmer at JLab