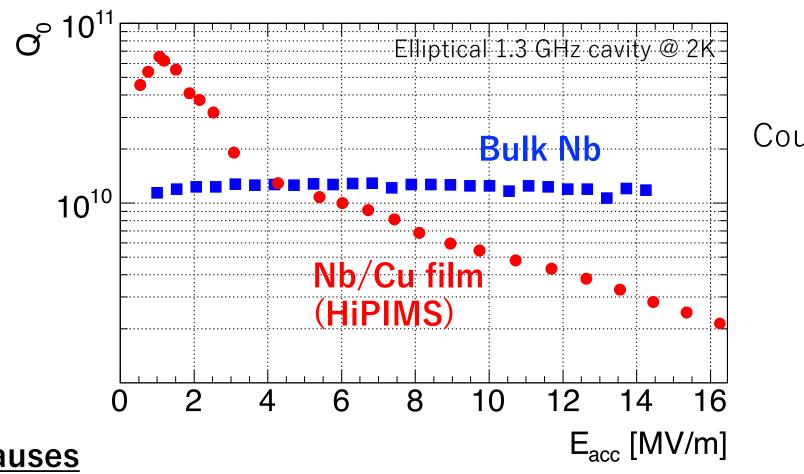
Q-slope problem of Nb/Cu cavities -thermal model vs trapped vortex -

A. Miyazaki CERN and University of Manchester

Common issue of Nb/Cu cavities: Q-slope problem



Courtesy Sarah Aull

Possible causes

- Thermal issues?
- Trapped flux dynamics?

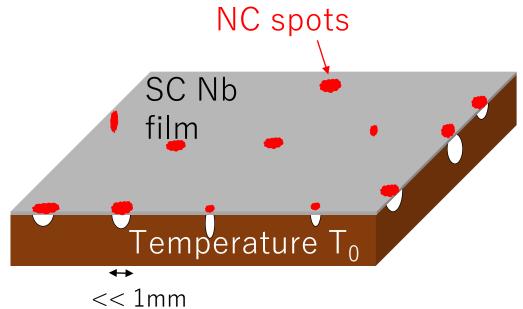
Recent progress will be shown in this talk

Thermal feed-back and its extension

Thermal instability caused by BCS-MB's exponential dependence on T $R_s(T_0) \rightarrow T_1 \sim T_0 + \alpha R_s H^2 \rightarrow R_s(T_1) \rightarrow T_2 \sim T_1 + \alpha R_s H^2 \dots$ Property: small Q-slope at low field, sudden quench at certain field \rightarrow Middle-field Q-slope in bulk Nb was explained but different from Nb/Cu's slope

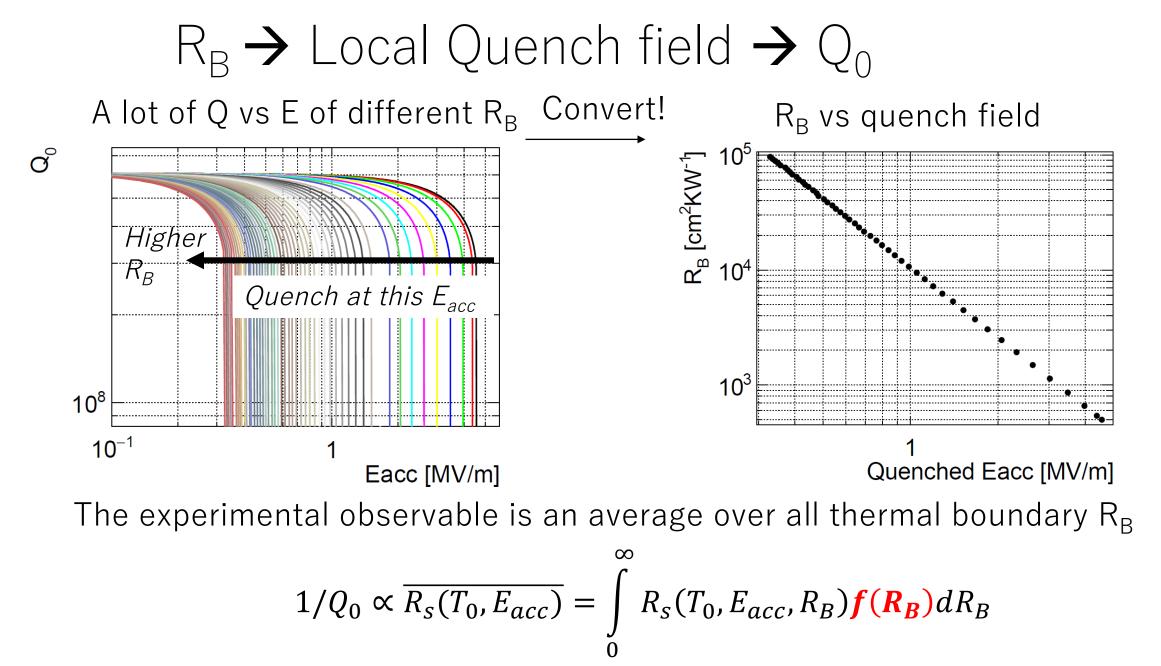
A new model by V. Palmieri , R. Vaglio [Supercond. Sci. Technol, 29 ,015004 (2016)]

Thermal runway by imperfect interfaces between Nb/Cu

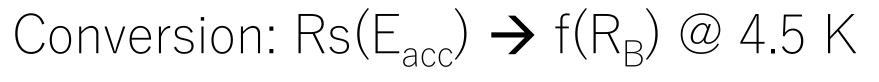


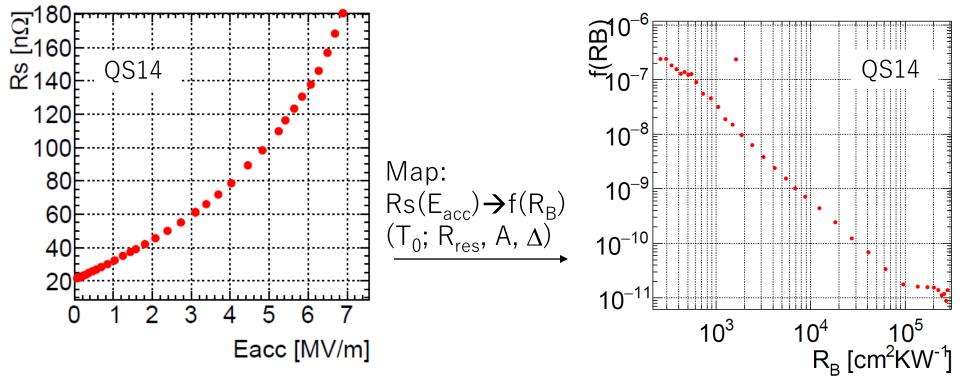
Even a very small (<<1mm) imperfection between Nb/Cu could make a huge thermal boundary $\mathbf{R}_{\mathbf{B}}$ and could cause *thermal runaway* and could eventually create a local quenched spot on the film

→ This quench never gets catastrophic but may cause Q-slope

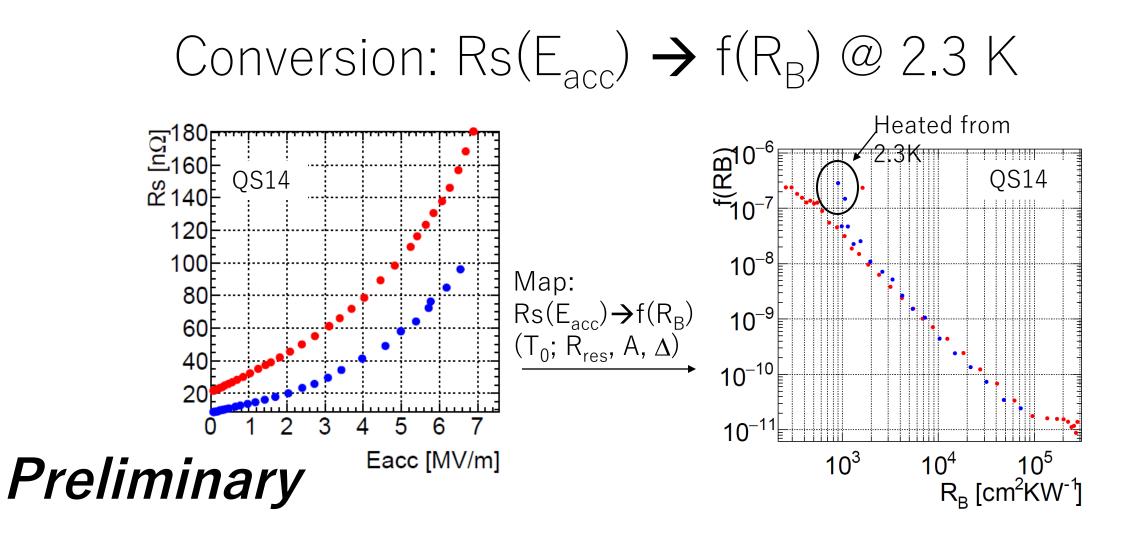


 $f(R_B)$ is the (**unknown**) distribution function of R_B due to imperfect interface.



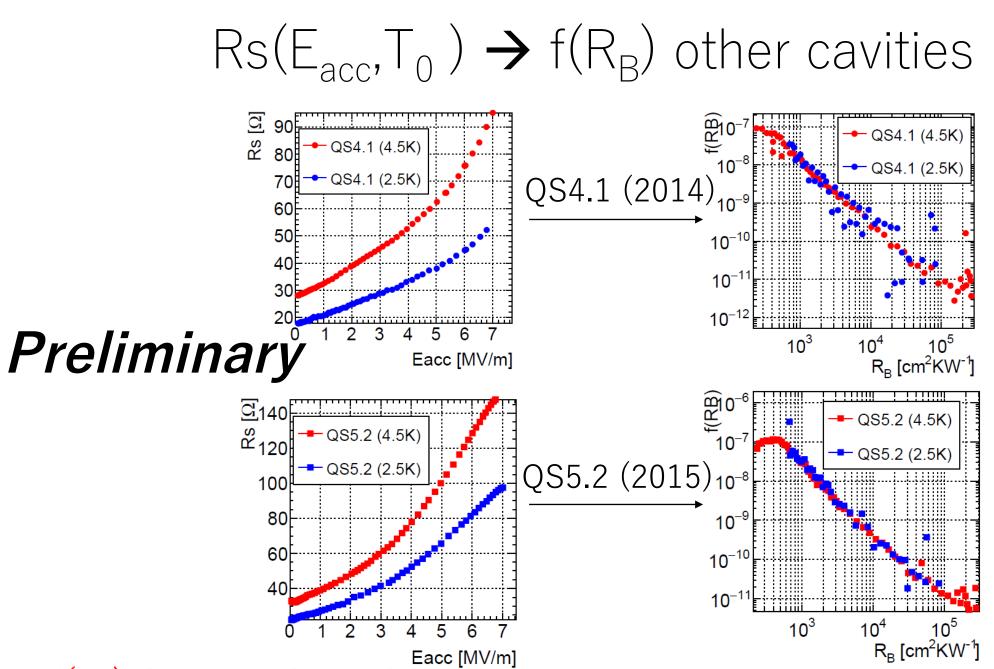


As a function of the bath temperature T_0 Rs [Q-slope] is converted to the distribution of thermal boundary *This is just a conversion (not a fit!) because f(R_B) is unknown*



Two different Q-slopes at different temperatures are converted to the identical distribution of the thermal boundary !

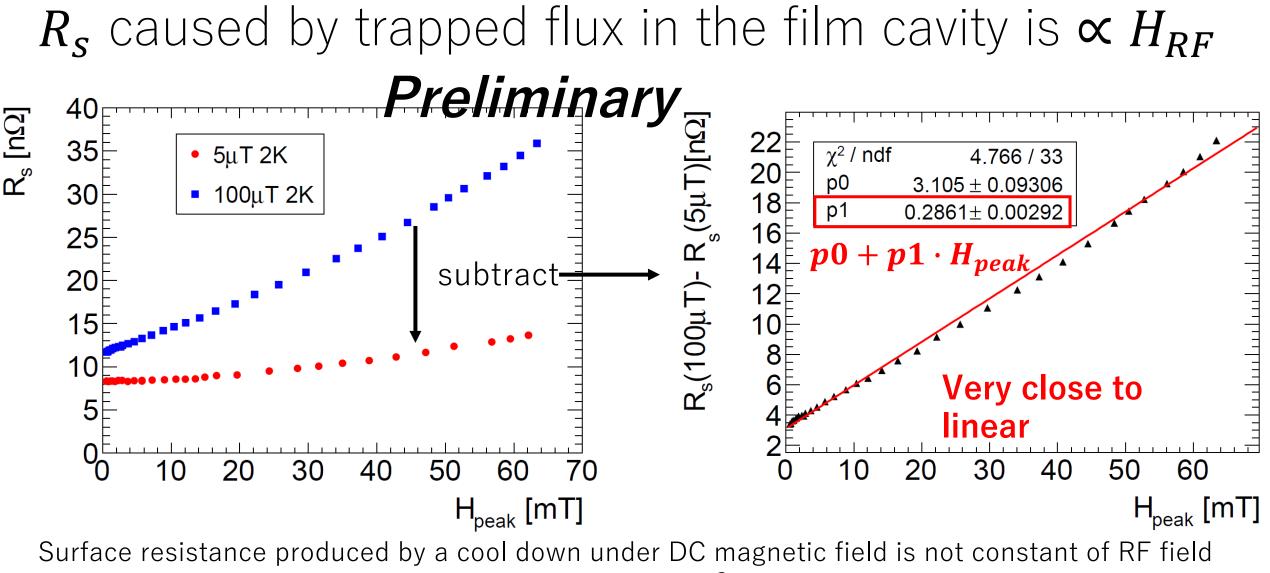
How about the other cavities?



 $f(R_B)$ does not depend on temperature \rightarrow intrinsic property of the cavity?

On the thermal boundary problem \cdots

- Similar studies on Nb/Cu
 - A. Aull "Trapped flux measurements & thermal boundary resistance analysis for an ECR Nb film", 7th International Workshop on Thin Films, 27-29 July 2016, Jefferson Lab, US
 - R. Vaglio "Thermal boundary resistance model and defect statistical distribution in Nb/Cu cavities", SRF2017, 17-21 July 2017, Lanzhou, China
- This model should only be valid after the removal of cool down and the trapped vortex effect
- However, f(R_B) coincidence was also observed for vortex-trapped cavity or badly thermal-cycled cases
- Hernan Furci in SRF2017 presented that the thermal stability of micro quench requires relatively big defects
- The converted f(R_B) may not be the distribution of the simple thermal boundary resistance
- This model is on hold \rightarrow A different approach was investigated



 $R_{fl} \sim H_{RF} \rightarrow P \sim H_{RF}^3$

 $R_s/H_{RF,peak}H_{ext} \sim 3 \times 10^{-3} \text{ n}\Omega(\text{mT})^{-1}(\mu\text{T})^{-1}$

Bardeen-Stephen model

$$M\frac{\partial^2 \boldsymbol{u}}{\partial t^2} = -\boldsymbol{f}_v - \boldsymbol{f}_t + \boldsymbol{f}_L - \boldsymbol{f}_M + \boldsymbol{f}_p$$

M :effective inertial mass per unit length

$$f_{v} = \eta \frac{\partial u}{\partial t} : \text{viscos force}$$

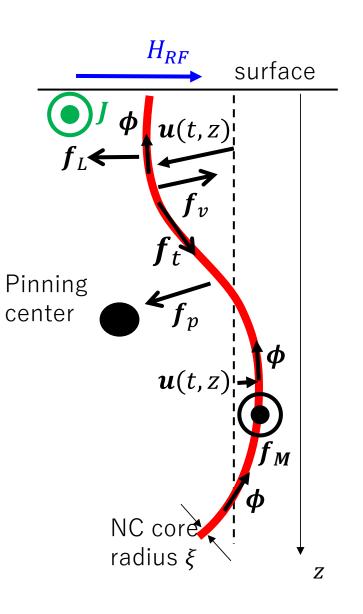
$$f_{t} = \frac{\delta F_{e}}{\delta u} \propto \frac{\partial^{2} u}{\partial z^{2}} : \text{string tension force}$$

$$f_{L} = J \times \phi : \text{Lorentz force}$$

$$f_{M} = f n_{s} e \frac{\partial u}{\partial t} \times \phi : \text{Magnus force}$$

$$f_{p} : \text{Pinning force}$$

Conventional calculations are linearized and does not predict $R_s \propto H_{RF}$



Rigid string model (J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734, 1966)

 H_{RF}

surface

$$M\frac{\partial^2 \boldsymbol{u}}{\partial t^2} = -\boldsymbol{f}_v - \boldsymbol{f}_t + \boldsymbol{f}_L - \boldsymbol{f}_M + \boldsymbol{f}_p$$

M : effective inertial mass per unit length $f_v = \eta \frac{\partial u}{\partial t}$: viscos force Pinning $f_t = \frac{\delta E_e}{\delta u} \propto \frac{\partial^2 u}{\partial z^2} \quad : \text{ string tension force No tension}$ $f_L = J \times \phi \quad : \text{ Lorentz force}$ center $f_{M} = \int n_{s}e \frac{\partial u}{\partial t} \times \phi \quad : \text{Magnus force No Magnus force}$ $f_{p} : \text{Pinning force} \sim -\sum_{i} ku(z_{i}) \text{ Linearized pinning force}$ NC coi radius Linear ordinary differential equation $\rightarrow u \propto J \propto H_{RF} \rightarrow P \propto \dot{u} f_L \propto H_{RF}^2 \rightarrow R_s$: constant \otimes

Gurevich model (A. Gurevich and G. Ciovati, Phys. Rev. Lett. B 77, 104501, 2008)

 H_{RF}

NC co

Pinning

center

surface

$$M\frac{\partial^2 u}{\partial t^2} = -f_v - f_t + f_L - f_M + f_R$$

M :effective inertial mass per unit length No mass

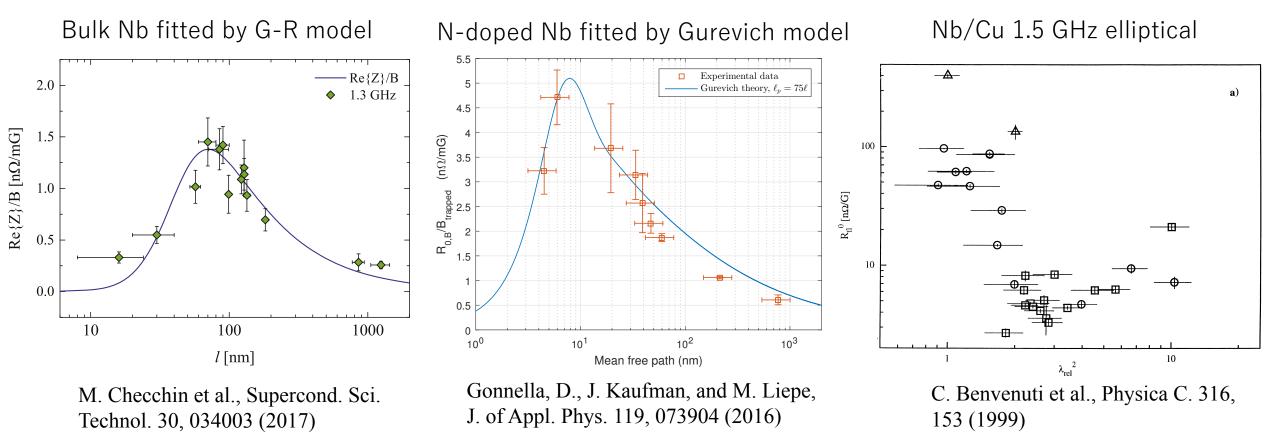
$$f_{v} = \eta \frac{\partial u}{\partial t} : \text{viscos force}$$
$$f_{t} = \frac{\delta F_{e}}{\delta u} \propto \frac{\partial^{2} u}{\partial z^{2}} : \text{string tension force}$$

$$T_L = \mathbf{J} \times \boldsymbol{\phi}$$
 : Lorentz force

 $\frac{1}{2} \times \phi$: Magnus force **No Magnus force**

 f_p : Pinning force No pinning force \rightarrow fix $u(z_i) = 0 \rightarrow$ super strong pinning Linear partial differential equation $\rightarrow u \propto J \propto H_{RF} \rightarrow P \propto \dot{u}f_L \propto H_{RF}^2 \rightarrow R_s$: constant \otimes

R_{fl} vs m.f.p.

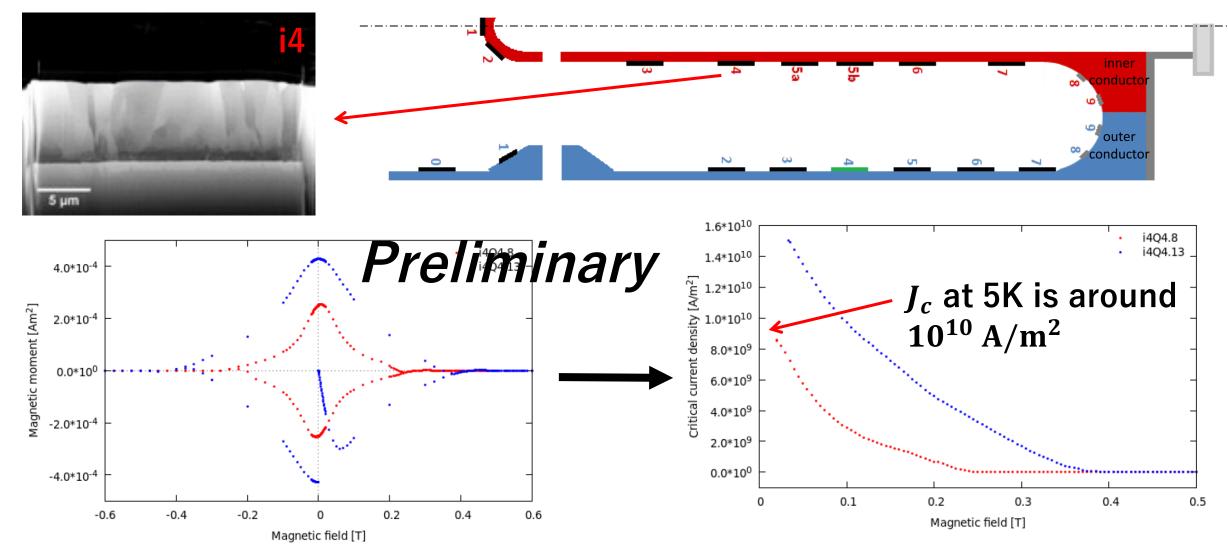


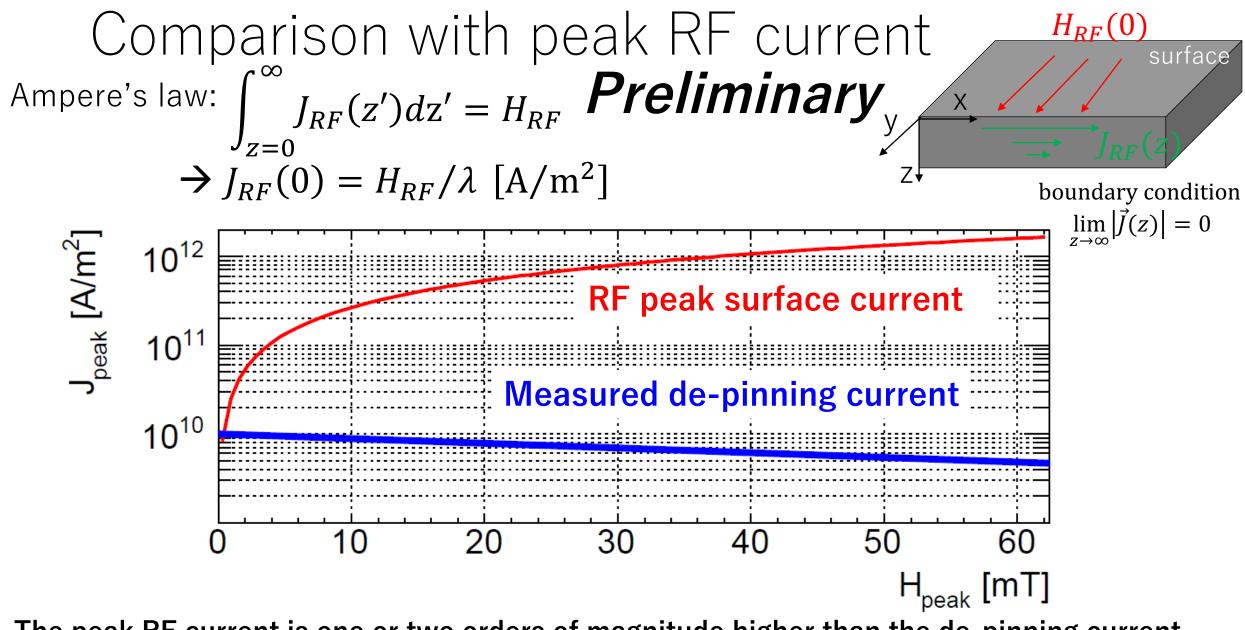
Not only the linearity, but old study showed dependence on mean free path opposite to bulk Nb and N-doped Nb.

 \rightarrow Where are we, in flux-pinning or flux-flow regime?

Pinning force \rightarrow De-pinning critical current J_c

The de-pinning critical current J_c can be obtained by the hysteresis loop of M(H)





The peak RF current is one or two orders of magnitude higher than the de-pinning current
→ The pinning force is "weak"

The description by the collective weak pinning

 The vortex near the surface becomes free from single pinning center during its RF cycle

 \rightarrow statistical sum of many pinning centers

• Cornell's analytical approximation resulted in

$$R_{fl} \propto \frac{4}{3} \frac{f \lambda^2 \mu_0}{B_c^2 \xi} \frac{J_0}{J_c} H_{ext} H_{RF}$$
$$\frac{R_{fl}}{H_{ext} H_{RF}} \sim 1.7 \times 10^{-3} \text{ n}\Omega(\text{mT})^{-1} (\mu\text{T})^{-1}$$

• On the other hand, experiment showed

$$\frac{R_{fl}}{H_{ext}H_{RF.peak}} \sim 3 \times 10^{-3} \,\mathrm{n}\Omega(\mathrm{mT})^{-1} (\mu\mathrm{T})^{-1}$$

→ Good agreement! Only a factor of two!

• HIE-ISOLDE cavity: f = 100 MHz

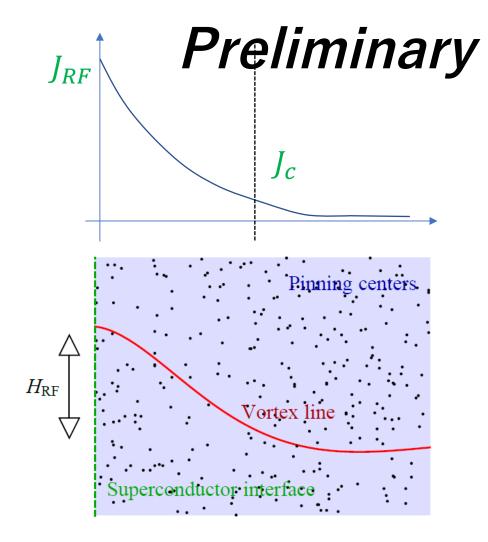
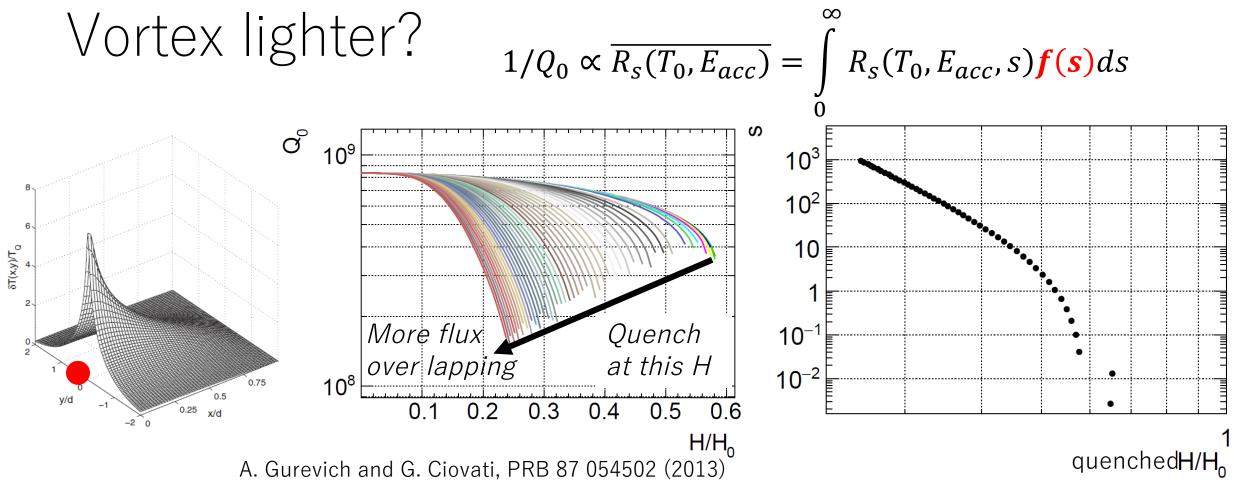


FIG. 4 Motion of a single trapped vortex subject to an RF field and collective pinning forces. **D. B. Liarte SRF2017**

Summary & outlook & open questions

- Q-slope may have the same temperature dependence as the thermal boundary problem
 - However, this was unreasonably valid for bad thermal cycled cases or trapped vortex cases
- Q-slope caused by the trapped vortex cannot be explained by the conventional models of vortex motion because they are linearized
- The de-pinning current measurement resulted in a good agreement with the recently proposed collective weak pinning model
 - A similar study for Nb₃Sn/Nb cavities will be desired
 - Can this model explain m.f.p. dependence?
 - Why was the Q-slope explained by the thermal problem?
- Possible discriminant: harmonics production (Thanks to S. Calatroni)
 - Thermal problem \rightarrow slow \rightarrow averaged over RF period
 - Vortex oscillation → fast → harmonics production
 - $H(t) \equiv H_0 \cos(\omega t) + a_{2nd} H_0^2 \cos(2\omega t) + a_{3rd} H_0^3 \cos(3\omega t) + \cdots$
 - Dedicated measurement will be interesting
- Non phenomenological approach (quasi-classical theory)?

backup



• Condensation of trapped vortex $\rightarrow \text{local quench} \rightarrow \text{Similar plot as } R_B$ was obtained

$$1/Q_0 \propto \overline{R_s(T_0, E_{acc})} = \int_0^\infty f(\mathbf{R}_B) dR_B \int_0^\infty f(\mathbf{s}) ds R_s(T_0, E_{acc}, s)$$

• The converted function could be a distribution of micro-quench's cause ¹⁹