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 Time-dependent Ginzburg-Landau approach

* Large-scale solver and other numerical tools
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* Vortex pinning

e Sizes of the defects

* Shapes of the defects

* Preliminary simulations of SRF cavities

* Route towards quantitate description of SRF cavities
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Numerical tools

Ginzburg-Landau solver Pinning optimizer Vortex detector
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TDGL solver

Time-dependent

equation

o ZA>2 ¢ + C(rv t)

Ginzburg-Landau w(@; +ip)yp = e(r)y — [Y*Y + (V

TZ A B,

s des L L
G/ W/

0O
N\
0O
¢/

U.
v" GP GPU Ly, N, B, y > B —J(>
implementation
v 2D &3D L., N, —
v" Up to 6903 grid y
points in 3D

Checkerboard
Rectangular

Inclusions are
modeled by critical
temperature T (r)
modulation —
arbitrary pinning
landscape

Sadovskyy et al.,
J. Comp. Phys. (2015)

3



Pinning optimizer

The routine maximizes/minimizes some noisy
objective function (it can be critical current,
dissipation level, etc) by varying parameters of
the pinning landscape of a given type.

Each objective function evaluation takes from
30 minutes to 12 hours for a given pinning
configuration.

Local optimization methods

* (Adaptive) coordinate descent
* Nelder-Mead

Global optimization methods
e Covariance matrix adaptation evolution strategy
* Particle swarm optimization

Kimmel, et al, 2017
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Actual positions and sizes of (almost) spherical Dy defects in YBa,Cu;0,_
were used in time-dependent Ginzburg-Landau simulations
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Sample with pre-existing
nanorods| |c was irradiated by
heavy ions at 45° to c-axis
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CAUTION

Low
temperature

Time-dependent Ginzburg-Landau model has
significant limitations

* Itis capable for T close to T, only

 TDGL model describes steady state, rather
than non-equilibrium state

* Heating effects are not considered

v

Results might be translated to low temperature
regime with caution



Defects in niobium

Surface defects Bulk defects

Inclusions

O

Interstitials
(e.g. O, N, H,
C) dissolved in
Nb matrix
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» System response to the applied (DC or AC) external current and magnetic field
* Pinning force of the inclusion having given shape and size



Defect sizes for strongest pining

%ee

Uncorrelated spherical defects

Ginzburg-Landau simulations for
strong type-Il superconductor

Koshelev, et al, 2016

Critical current density (or pinning
force density) at a given magnetic
filed has a maximum as a function
of defect diameter and defect
density

Diameter for
highest vortex
pinning,

dopr = 3—4 §(T)




Pining regimes

Low vortex density, weak vortex-vortex interaction Weekly deformed Abrikosov lattice
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Defect sizes for strongest pining

Columnar-shaped defects:
optimal diameter, D, = 2-3 §(T)
Kimmel, et al, 2017

Wall-shaped defects (strongest!):
optimal wall thickness, b__. = 0.5-1 ¢(T)

Sadovskyy, et al, in preparation

opt
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Surface barrier

Ideal wall-shaped defects have the strongest
pinning capabilities

SC-vacuum boundary can be considered as a
strong pinning center

Vacuum

SC 70 O o ©
O "o

Defects near the SC-

vacuum boundary reduce
surface barrier

Sadovskyy, et al, in preparation Kimmel, et al, in preparation
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Vortices captured by defects

Vacuum

N

Clean superconductor
* Maximum surface barrier

* Free flow vortices

AC field
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Superconductor with defects

e Reduced surface barrier
* Pinned vortices

Defects near SC surface can capture vortices
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Optimum?
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Simulations in parallel AC fields
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Vacuum

Fast moving of the “tail”

Frozen vortices

Slow moving
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Route towards SRF cavities simulation

TDGL can describe vortex dynamics qualitatively, not quantitavely

1. Replacement of the TDGL equation by T
Usadel/Eilenberger or Bogoliubov—de
Gennes equation
» Quantitative description of vortex

matter in SRF cavities

2. Heat transfer equation [Poisson
equation]
» Overheating for vortex avalanches
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