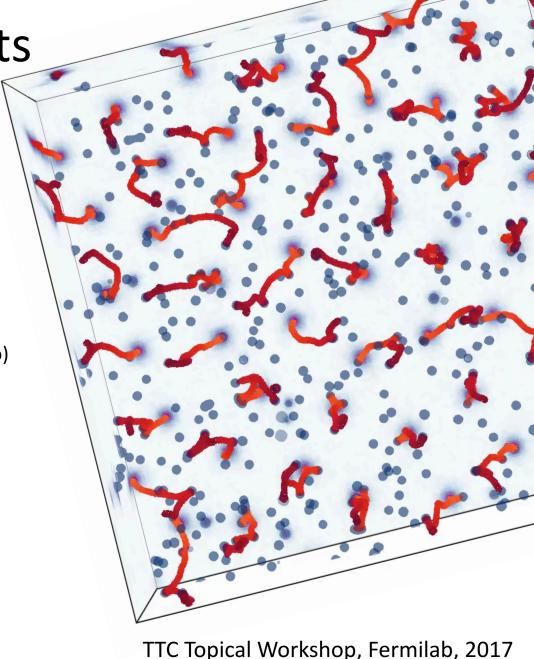
Theoretical insights on pinning

Ivan Sadovskyy (Argonne, UChicago)

Andreas Glatz (Argonne, NIU)

Alexei Koshelev (Argonne)

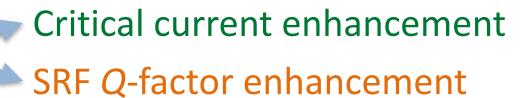
Gregory Kimmel (Northwestern)



Outline

- Time-dependent Ginzburg-Landau approach
 - Large-scale solver and other numerical tools
 - Capabilities
 - Limitations
- Vortex pinning
 - Sizes of the defects
 - Shapes of the defects
- Preliminary simulations of SRF cavities
- Route towards quantitate description of SRF cavities

Pinning studies



Numerical tools

Ginzburg-Landau solver

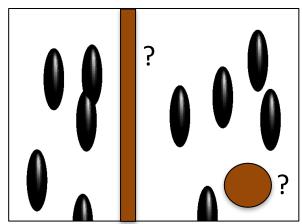


Input: Pinning landscape

Solves time-dependent Ginzburg-Landau equations. C++/CUDA

Output: $\psi(\mathbf{r},t)$

Pinning optimizer

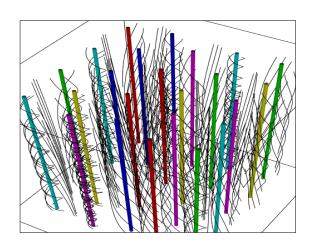


Input: Type of pinning landscape

Looks for pinning landscape parameters to minimize objective function (e.g., dissipation level). Python

Output: optimal pinning parameters

Vortex detector



Input: $\psi(\mathbf{r})$

Detects and tracks positions of vortices. Python/C++

Output: Vortex line positions

TDGL solver

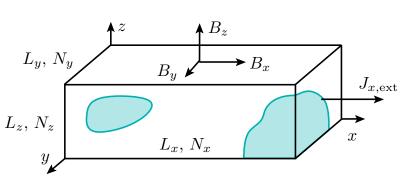
Time-dependent Ginzburg-Landau equation

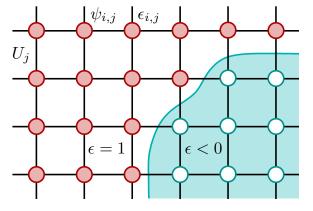
 $u(\partial_t + i\mu)\psi = \epsilon(\mathbf{r})\psi - |\psi|^2\psi + (\nabla - i\mathbf{A})^2\psi + \zeta(\mathbf{r}, t)$

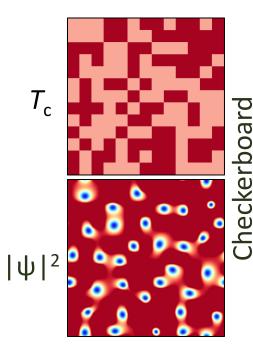
✓ GP GPU
implementation

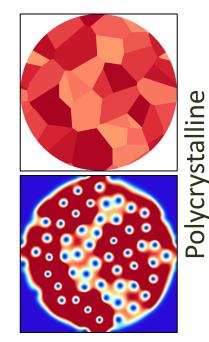
✓ 2D & <u>3D</u>

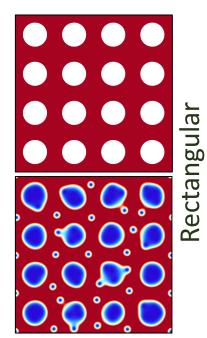
✓ Up to 690³ grid points in 3D











Inclusions are modeled by critical temperature $T_c(\mathbf{r})$ modulation – arbitrary pinning landscape

Sadovskyy *et al.,* J. Comp. Phys. (2015)

Pinning optimizer

The routine maximizes/minimizes some noisy objective function (it can be critical current, dissipation level, etc) by varying parameters of the pinning landscape of a given type.

Each objective function evaluation takes from 30 minutes to 12 hours for a given pinning configuration.

Local optimization methods

- (Adaptive) coordinate descent
- Nelder-Mead

Global optimization methods

- Covariance matrix adaptation evolution strategy
- Particle swarm optimization

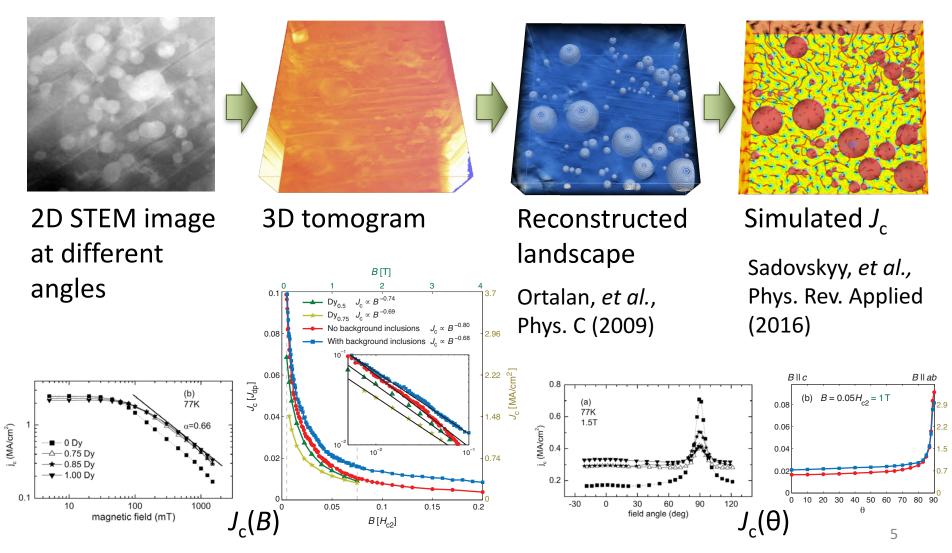
Titan @ Oak Ridge LCF

Cooley @ Argonne LCF

GAEA @ NIU

Experiment: Dy particles in YBCO

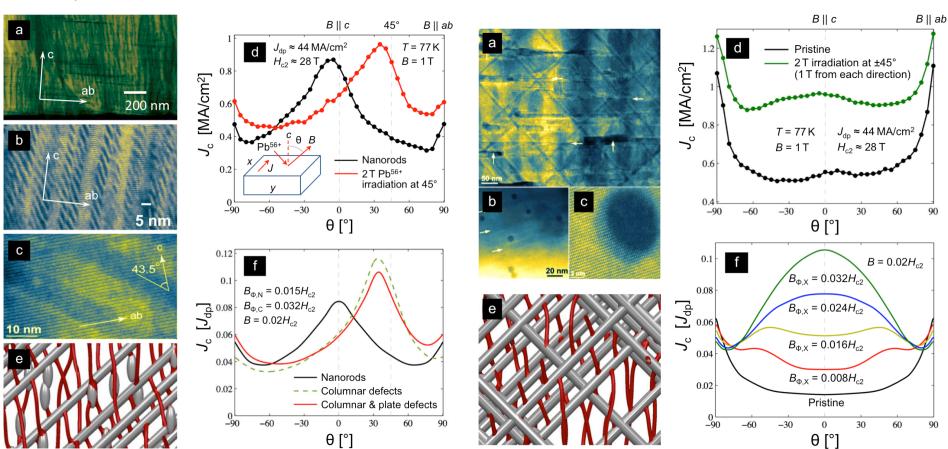
Actual positions and sizes of (almost) spherical Dy defects in $YBa_2Cu_3O_{7-\delta}$ were used in time-dependent Ginzburg-Landau simulations



Experiment: Irradiated defects

Sample with pre-existing nanorods |c| was irradiated by heavy ions at 45° to c-axis

Pristine sample was irradiated by heavy ions at $\pm 45^{\circ}$ to *c*-axis



Sadovskyy, et al, Adv. Mater. (2016)

TDGL limitations

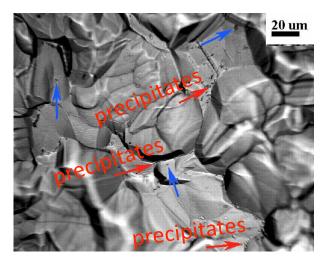
Time-dependent Ginzburg-Landau model has significant limitations

- It is capable for T close to T_c only
- TDGL model describes steady state, rather than non-equilibrium state
- Heating effects are not considered

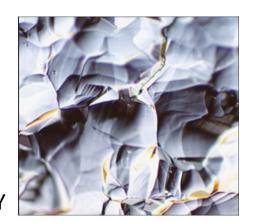
Results might be translated to low temperature regime with caution

Defects in niobium

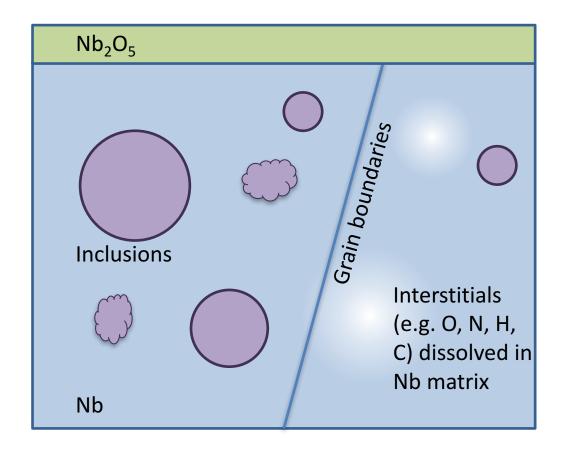
Surface defects



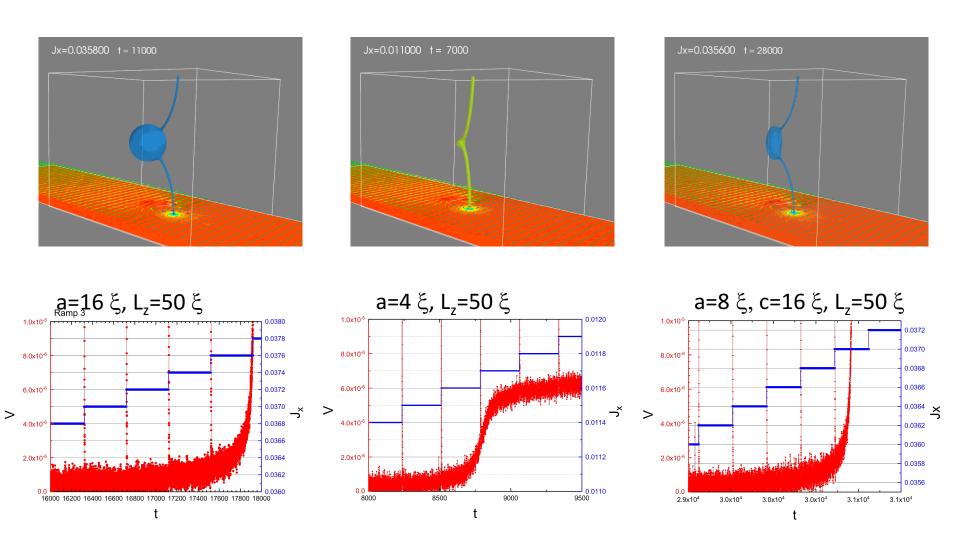
Delayen, el al, 2001



Bulk defects

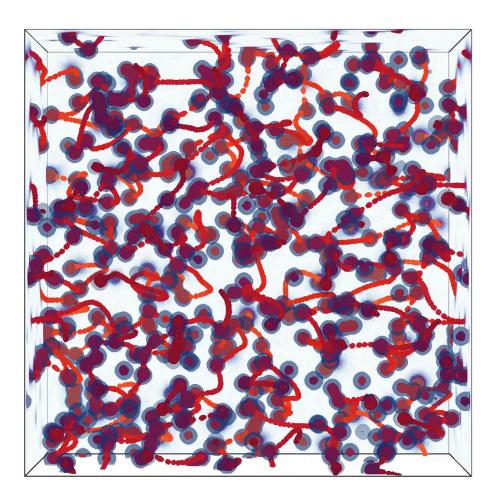


Depinning from isolated particle



- System response to the applied (DC or AC) external current and magnetic field
- Pinning force of the inclusion having given shape and size

Defect sizes for strongest pining



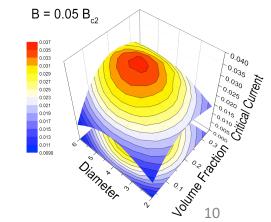
Uncorrelated spherical defects

Ginzburg-Landau simulations for strong type-II superconductor

Koshelev, et al, 2016

Critical current density (or pinning force density) at a given magnetic filed has a maximum as a function of defect diameter and defect density

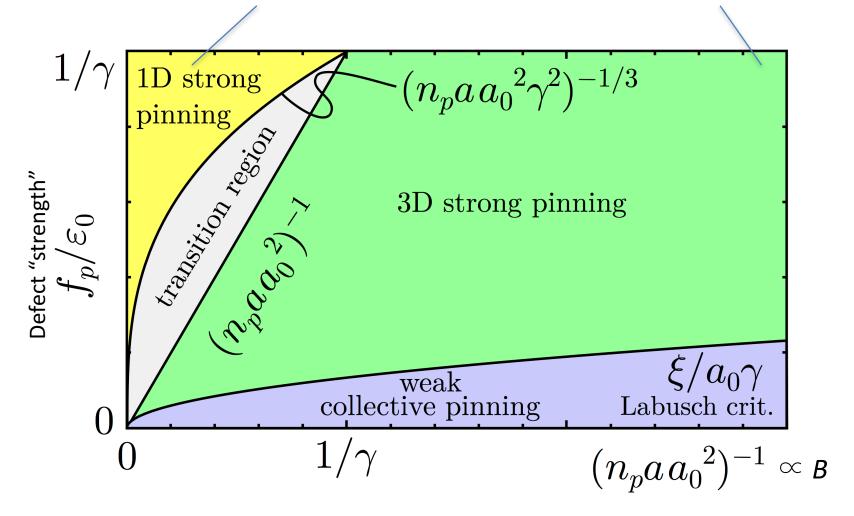
Diameter for highest vortex pinning, $d_{opt} = 3-4 \xi(T)$



Pining regimes

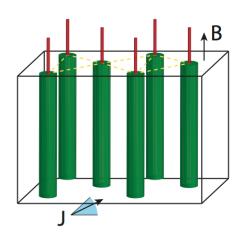
Low vortex density, weak vortex-vortex interaction

Weekly deformed Abrikosov lattice



Willa, et al, 2017

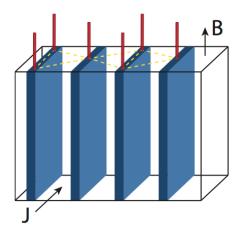
Defect sizes for strongest pining



Columnar-shaped defects:

optimal diameter, $D_{opt} = 2-3 \xi(T)$

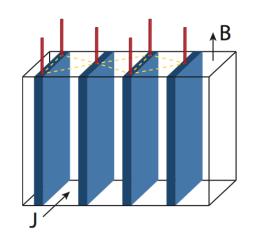
Kimmel, et al, 2017



Wall-shaped defects (strongest!): optimal wall thickness, $b_{opt} = 0.5-1 \, \xi(T)$

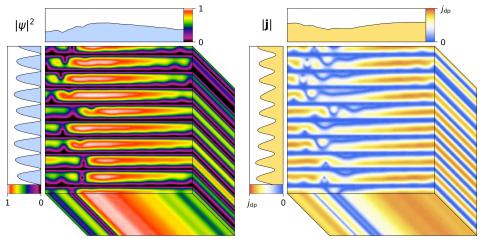
Sadovskyy, et al, in preparation

Surface barrier

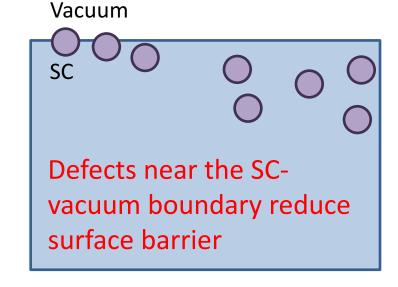


Ideal wall-shaped defects have the strongest pinning capabilities

SC-vacuum boundary can be considered as a strong pinning center

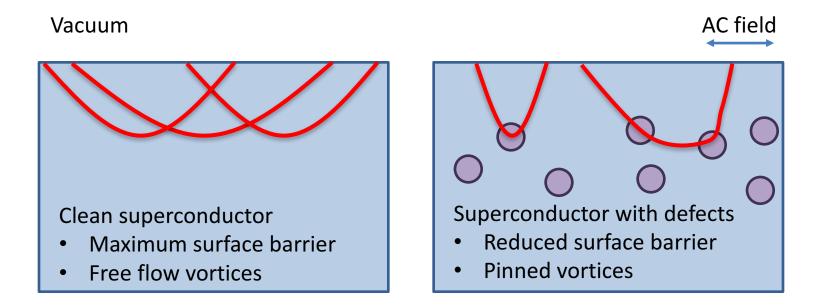


Sadovskyy, et al, in preparation



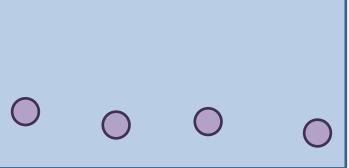
Kimmel, et al, in preparation

Vortices captured by defects



Defects near SC surface can capture vortices

Vacuum



Optimum?

Simulations in parallel AC fields

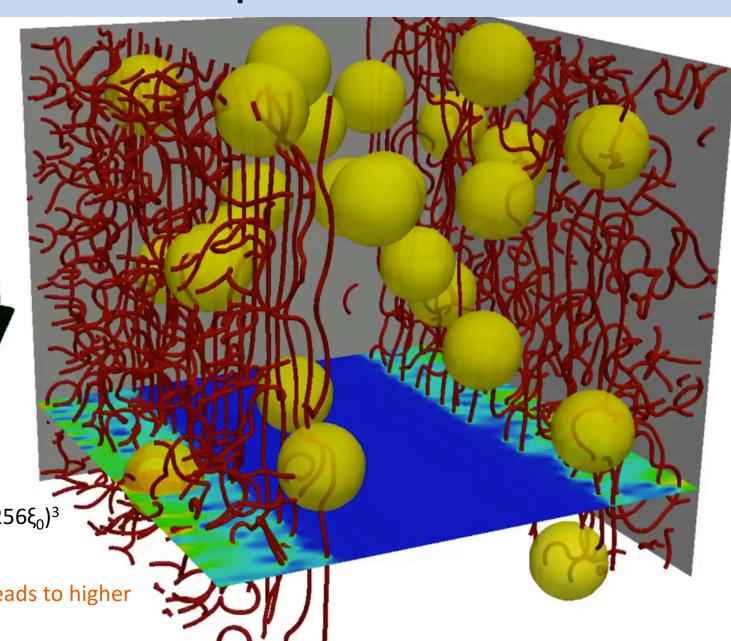
Bulk superconductor Nb_3Sn_2 with $T_c = 14K$

B

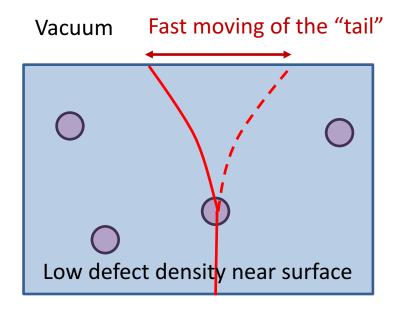
Defects Nb_2Sn_3 with $T_c = 6K$ of diameter $40\xi_0$ occupy 5% volume fraction

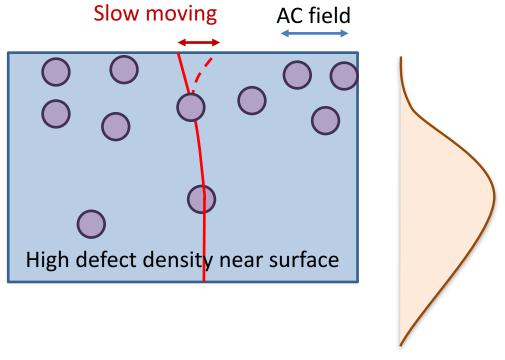
Simulation volume $(256\xi_0)^3$ 140M grid points

Addition of defects leads to higher dissipation level



Frozen vortices



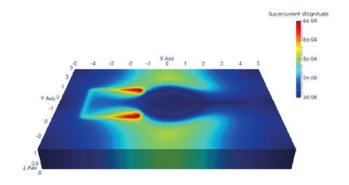


Optimal distribution of the defects density and sizes

Route towards SRF cavities simulation

TDGL can describe vortex dynamics qualitatively, not quantitavely

- Replacement of the TDGL equation by Usadel/Eilenberger or Bogoliubov–de Gennes equation
 - Quantitative description of vortex matter in SRF cavities



- Heat transfer equation [Poisson equation]
 - Overheating for vortex avalanches

