Non-equilbribum superconductivity in aluminium microwave resonators

Pieter de Visser

p.j.de.visser@sron.nl

SRON: Jochem Baselmans, Stephen Yates, Pascale Diener Delft: Teun Klapwijk, Akira Endo, Cambridge: David Goldie, Stafford Withington, Tejas Guruswamy Moscow: Sasha Semenov, Igor Devyatov

From light to signal

Incoming photons break Cooper pairs => Higher resistance and inductance => Resonance shifts and gets shallower

Microwave readout, energies far below the gap Less background quasiparticles => more sensitive

P. Day, et al., Nature 425, 817 (2003)

Thousands of pixels, one pair of cables

From light to signal

Simple picture: number of quasiparticles

$$\frac{dA}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_1}{dn_{qp}},$$
$$\frac{d\theta}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_2}{dn_{qp}},$$

 $N_{qp}\Delta$ $\eta_{opt}\eta_{pb}P_{rad} =$ τ_{qp}

P. Day, et al., Nature 425, 817 (2003)

From light to signal

Distribution function and density of states can change both, intrinsically non-equilibrium

$$\begin{array}{lll} \frac{\sigma_{1}}{\sigma_{N}} &=& \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)] g_{1}(E) dE & \text{Microwave: } \mathbf{Q}_{i}, \mathbf{A} \\ &+& \frac{1}{\hbar\omega} \int_{\min(\Delta - \hbar\omega, -\Delta)}^{-\Delta} [1 - 2f(E + \hbar\omega)] g_{1}(E) dE & \text{Pair breaking} \\ \frac{\sigma_{2}}{\sigma_{N}} &=& \frac{1}{\hbar\omega} \int_{\max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)] g_{2}(E) dE & \text{Microwave: } \mathbf{f}_{\text{res'}} \, \theta \end{array}$$

Signal vs pair-breaking power

Observables connected to superconductor

- Number of quasiparticles
- Quasiparticle recombination time
- Complex conductivity
 - Quality factor = losses, quasiparticles
 - Frequency/phase shift = kinetic inductance, condensate
 - Device responsivity
- Detector sensitivity (response/noise)

Generation-recombination noise

Higher temperature:

- More quasipartices
- Shorter recombination lifetime

riequency

$$S_{N} = \frac{4 < N^{2} > \tau}{1 + \omega^{2} \tau^{2}} = \frac{4N\tau}{1 + \omega^{2} \tau^{2}}$$

$$N_{qp} = 2N_{0}\sqrt{2\pi kT\Delta} \exp(-\Delta/kT)$$

$$\tau = \frac{\tau_{0}}{\sqrt{\pi}} \left(\frac{kT_{c}}{2\Delta}\right)^{5/2} \sqrt{\frac{T_{c}}{T}} \exp(\Delta/kT)$$
Frequency

Measurement of quasiparticle fluctuations, all AI resonator

Phys. Rev. Lett. 106, 167004 (2011)

Measurement of quasiparticle fluctuations

Consistent recombination lifetime from noise and pulse measurement

Measurement of quasiparticle fluctuations

 $S_N = \frac{4N\tau}{1+\omega^2\tau^2}$

Measurement of the number of quasiparticles Saturation of quasiparticle number at low temperature

Phys. Rev. Lett. 106, 167004 (2011)

Pair breaking photons, 1.5 THz

1.5 THz KID limited by fundamental (ie quasiparticle) noise processes

Nature Communications 5, 3130 (2014)

Not limited by stray-light

Influence of microwave dissipation on pair-breaking response (1.5 THz)

Detector sensitivity limited by excess QPs due to microwave readout Nature Communications 5, 3130 (2014)

Now also same sensitivity 1000 pixels

Pair-breaking photons vs energy

Wide bandwidth FTS measurement

Appl. Phys. Lett. 106, 252602 (2015)

Microwave field/photons

- We need a high microwave field to suppress noise
 - Amplifier/system noise
 - Two level system noise

Excess quasiparticles

Microwave power dependent

Phys. Rev. Lett. 106, 167004 (2011)

Appl. Phys. Lett. 100, 162601 (2012)

Non-linear resonator response curves

Low T quasiparticle creation, but at higher T Q_i enhancement

Non-equilibrium f(E)

Ivlev, Lisitsyn, Eliashberg, JLPT 10, 449 (1973) - Microwave absorption, gap enhancement close to Tc Chang and Scalapino, PRB 15, 2651 (1977) - kinetic equations Goldie and Withington, SuST 26, 015004 (2013) – Iow temperature, resonators

Non-equilibrium f(E)

Ivlev, Lisitsyn, Eliashberg, JLPT 10, 449 (1973) - Microwave absorption, gap enhancement close to Tc Chang and Scalapino, PRB 15, 2651 (1977) - kinetic equations Goldie and Withington, SuST 26, 015004 (2013) – Iow temperature, resonators

Non-equilibrium f(E) – steady state

Goldie and Withington, SuST 26, 015004 (2013) PdV et al. Phys. Rev. Lett. 112, 047004 (2014)

Example $f(E) \rightarrow \sigma_{1,}Q_{i}$

Phys. Rev. Lett. 112, 047004 (2014)

Other observables

Nqp, lifetime: effective temperature possible, Qi, frequency not at all

Is this insight useful?

Under strong pair-breaking power Qi decreases rapidly, but microwave enhancement leads to >3x higher Qi

If no Qi enhancement due to redistribution, AI MKIDs would not work at all at the telescope!

Is this insight useful?

Under strong pair-breaking power Qi decreases rapidly, but microwave enhancement leads to >3x higher Qi

If no Qi enhancement due to redistribution, AI MKIDs would not work at all at the telescope!

Absorption, f(E) redistribution, does not explain everything

Quasiparticles only do not describe the condensate observable

Microwave: 'Coherent excited states'

Semenov et al. PRL 117, 047002 (2016)

Naive understanding

Vector potential $Acos(\omega t)$, pulls apart the pair in momentum space

- In equilibrium the two electrons have opposite momenta: $k_1 + k_2 = 0$.
- In a DC-field this becomes k₁+k₂=q => density of states broadening => nonlinear L
- For finite frequency: $k_1 + k_2 = q_0 \cos(\omega t)$, now it depends on the frequency and field strength. Whether it is 'quantised' will depend on q_0 vs ω .

NOTE: the momentum effect is also known as depairing or 'pair-breaking', but it is NOT the same as pair-breaking due to a photon/phonon with $E>2\Delta$

Microwave: 'Coherent excited states'

Semenov et al. PRL 117, 047002 (2016)

Effect on complex conductivity

Nonlinear frequency-shift for AI resonator that is not due to f(E) effect, is quantitatively explained!

Scales with I², both for AC and DC, need for other type of experiments to fully explore the density of states structure.

Semenov et al. PRL 117, 047002 (2016)

Effect on complex conductivity

Nonlinear frequency-shift for AI resonator that is not due to f(E) effect, is quantitatively explained!

Scales with I², both for AC and DC, need for other type of experiments to fully explore the density of states structure.

Thus dependent in which regime you are (field, temperature, relaxation), the f(E) or DOS change dominates in AC field

Semenov et al. PRL 117, 047002 (2016)

Exponential tail influences absorption treshold around gap

Summary

- Quasiparticle- and electrodynamics probed by microwave resonators: different observables access different aspects of non-equilibrium
- Excess quasiparticles present due to microwave absorption and slow relaxation in AI
- Non-equilibrium effect on the Density-of-states due to the current, AI at 5 GHz is in 'quantum regime'.

KIDs exist by the virtue of non-equilibrium superconductivity

Al properties

- Tc = 1.2K
- Microwave frequency = 5 GHz, $\Delta/hf\sim$ 9
- Temperature: 100-300 mK, T/Tc~10 and hf/kT>1
- Qi ~ 2M
- At 100 mK, very slow relaxation (recombination >1ms, scattering ~100 us)
- D~100 cm²/s
- Penetration depth ~100 nm

Typical current distribution in AI CPW

Current distribution depends on penetration depth and film thickness (~120 nm and 40 nm in our case)