Collective weak pinning model of vortex dissipation in SRF cavities

Center for BRIGHT BEAMS A National Science Foundation Science & Technology Center

TTC Topical Workshop - RF Superconductivity: Pushing Cavity Performance Limits

- a) Introduction
- b) Collective weak pinning
- c) Results
- d) Final remarks

- a) Introduction
- b) Collective weak pinning
- c) Results
- d) Final remarks

Gaining insight on trapped flux

Introduction and flux expulsion measurements on fine grain cavities	Sam POSEN
IARC Auditorium, Fermilab	08:30 - 08:55
Flux expulsion measurements in large grain cavities	Dr. Pashupati DHAKAL
IARC Auditorium, Fermilab	08:55 - 09:20
Variations in bulk flux trapping by MO imaging in Nb	Shreyas BALACHANDRAN
IARC Auditorium, Fermilab	09:20 - 09:45
Theoretical insights on pinning	Ivan SADOVSKI
IARC Auditorium, Fermilab	09:45 - 10:05
Point pinning versus grain boundary pinning – physics and techniques	Zuhawn SUNG
IARC Auditorium, Fermilab	10:05 - 10:25
Coffee Break	
IARC Auditorium, Fermilab	10:25 - 10:45
Theoretical models of flux expulsion and dissipation	Dr. Mattia CHECCHIN
IARC Auditorium, Fermilab	10:45 - 11:10
Flux losses due to weak collective pinning	Dr. Danilo LIARTE
IARC Auditorium, Fermilab	11:10 - 11:35
Vortex dissipation in Nb/Cu films	Dr. Akira MIYAZAKI
IARC Auditorium, Fermilab	11:35 - 12:00
Flux dissipation in Nb3Sn Films	Ryan PORTER
IARC Auditorium, Fermilab	12:00 - 12:25

Sensitivity of R_0 to trapped flux

Dependence on MFP (Gonnella)

Dependence on RF field (Hall)

Gonnella et al. J. Appl. Phys. 2016

Hall et al. IPAC 2017

- a) Introduction
- b) Collective weak pinning
- c) Results
- d) Final remarks

\sqrt{N} fluctuations and collective weak pinning

Pinning f orces add up randomly; only fluctuations can pin the line.

 $F_{pin} \cong \sqrt{f_{pin}^2 n \xi^2 L}$ accumulated pinning force

For $L > L_c$, a vortex can bend to find a favorable position in the pinning potential, cutting off the square-root growth of F_{pin} .

FIG. 4. Single vortex line pinned by the collective action of many weak pointlike pinning centers. Only fluctuations in the pin density are able to pin the vortex. In order to accommodate optimally to the pinning potential, the vortex line deforms by ξ (the minimal transverse length scale the vortex core is able to resolve equals the scale of the pinning potential) on a longitudinal length scale L_c , the collective pinning length.

\sqrt{N} fluctuations and collective weak pinning

A vortex breaks up into segments of size L_c ; each will compete with the Lorentz force.

Pinning force & depinning current...

$$F_{pin}(L_c) = F_{Lorentz}(j_d, L_c)$$
$$\frac{F_{pin}}{L_c} = H_c^2 \xi \frac{j_d}{j_o} \qquad (\text{cgs units})$$

FIG. 4. Single vortex line pinned by the collective action of many weak pointlike pinning centers. Only fluctuations in the pin density are able to pin the vortex. In order to accommodate optimally to the pinning potential, the vortex line deforms by ξ (the minimal transverse length scale the vortex core is able to resolve equals the scale of the pinning potential) on a longitudinal length scale L_c , the collective pinning length.

- a) Introduction
- b) Collective weak pinning
- c) Results

d) Final remarks

Collective weak pinning at low frequency Derivation and analytical solution

for $y > y^*$

Collective weak pinning at low frequency 'Sanity' tests

Point-like force, collective weak pinning, BC...

Viscous dissipation term

Dependence on RF field

- The linear behavior is consistent with collective weak pinning (but not accurate) Using $j_d \sim 3 \times 10^{-3} j_o$
- There is a factor of 100 off in comparison with the experimental results. Viscous dissipation is needed.

$$a = \frac{4}{3} \frac{f \lambda^2 \mu_0}{B_c^2 \xi} \frac{j_o}{j_d};$$

$$b = 0$$

DBL, Hall, Liepe, Sethna, in progress

Collective weak pinning at low frequency 'Sanity' tests

Estimate density of impurities assuming experimental value for $j_d \sim 3 \times 10^{-3} j_o$

$$F_{pin} \cong \sqrt{f_{pin}^2 n \xi^2 L_c}$$

$$n^{1/3} = \frac{\xi(l)}{10 a^2}$$
$$\xi(l) = \frac{0.738 \xi_0}{\sqrt{1 + 0.882 \xi_0}}$$

Collective weak pinning at high frequency Simulated solution

At $B_{rf} = 20$ mT

At $B_{rf} = 50$ mT

Sensitivity of R_0 to trapped flux as a function of the RF field

• Simulation

• Experiment (Hall)

At $j_d = 1$ (black), 2 (red), 3 (blue), and 4mA/ μ m² (green)

Sensitivity of R_0 to trapped flux as a function of frequency

Simulation

• Experiment (Oseroff)

- a) Introduction
- b) Collective weak pinning
- c) Results

d) Final remarks

Conclusions and future work

- Hysteretic losses might explain the dependence of the residual resistance sensitivity to trapped flux on the RF field.
- Our approximations are consistent, though we predict dissipations larger than the experimental ones by a factor of about eight.
- The collective weak-pinning model predicts three distinct regimes for the dissipation as a function of frequency: linear, square-root, and a plateau.
- Simulations with explicit inclusion of impurities.
- Large amplitudes, grain boundaries, and mixed (strong and weak pinning) scenarios.
- Experimental check: do most trapped vortices lie perpendicular to the interface? (We have assumed vortices that are normally aligned with respect to the interface.)

Acknowledgments

- TTC Topical Workshop Committee, for the invitation.
- The Sethna and the Liepe groups in Cornell.
- The Center for Bright Beams SRF team.
- Prof. Alex Gurevich, for useful consultation.
- Financial support from the Center for Bright Beams.

TTC Topical Workshop - RF Superconductivity: Pushing Cavity Performance Limits

