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Gaining	insight	on	trapped	flux

11/13/17, 3'50 PMTTC Topical Workshop - RF Superconductivity: Pushing Cavity Performance Limits (15-November 17, 2017)
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Sensitivity	of	𝑅" to	trapped	flux

Mean free path (nm)
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𝑁� fluctuations	and	collective	weak	pinning

𝐹&'( ≅ 𝑓&'(
+	𝑛	𝜉+	𝐿

�

ℇ&'( 𝐿1 = ℇ34567'1 𝐿1

For	𝐿 > 𝐿1,	a	vortex	can	bend	to	find	a	
favorable	position	in	the	pinning	potential,	
cutting	off	the	square-root	growth	of	𝐹&'(.

accumulated	pinning	force

Pinning	f	orces add	up	randomly;	only	
fluctuations	can	pin	the	line.

𝑀𝑢̈ = 𝑓< + 𝑓> + 𝑓& + 𝑓3 + 𝑓?
viscous

Lorentz

pinning

elastic

Magnus
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𝑁� fluctuations	and	collective	weak	pinning

ℇ&'( 𝐿1 = ℇ34567'1 𝐿1

𝑀𝑢̈ = 𝑓< + 𝑓> + 𝑓& + 𝑓3 + 𝑓?
viscous

Lorentz

pinning

elastic

Magnus

inertial

𝐹&'( 𝐿1 = 𝐹>@A3(7B(𝑗E, 𝐿1)

Pinning	force	&	depinning	current…

𝐹&'(
𝐿1

= 𝐻1+𝜉	
𝑗E
𝑗@

(cgs units)

A	vortex	breaks	up	into	segments	of	size	𝐿1;	
each	will	compete	with	the	Lorentz	force.
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Collective	weak	pinning	at	low	frequency
Derivation	and	analytical	solution
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0 = 𝑓> + 𝑓&?J + 𝑓3
Lorentz

MF	pinning

elastic

𝑦LL = 𝛼 − 𝛽 sin 𝑡 𝛿(𝑧)

Solution for Nb3Sn at 20mT RF field and
1mA/µm2 depinning current

𝑦V 𝑧 = 𝑎 𝑡 − 𝛽 sin 𝑡 𝑧 −
|𝛼|
2 𝑧+

𝑦 < 𝑦∗

𝑦\ 𝑧 =
|𝛼|
2 𝑧 − 𝛽 |𝛼|]

+

𝑦 > 𝑦∗

𝑦∗(𝑡)

for

for

𝑦\(𝑧)𝑦V(𝑧)



Collective	weak	pinning	at	low	frequency
‘Sanity’	tests
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Dependence	on	RF	field
• The	linear	behavior	is	consistent	with	
collective	weak	pinning	(but	not	
accurate)
• There	is	a	factor	of	100 off	in	
comparison	with	the	experimental	
results.	Viscous	dissipation	is	needed.

DBL,	Hall,	Liepe,	Sethna,	in	progress

𝑅"
𝐵7A5&&3E

= 𝑎	𝐵A_ + 𝑏

𝑎 =
4
3
𝑓𝜆+𝜇"
𝐵1+𝜉

𝑗@
𝑗E
;

𝑏 = 0

Using	𝑗E~3	×10jk𝑗@



Collective	weak	pinning	at	low	frequency
‘Sanity’	tests
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Collective	weak	pinning	at	high	frequency	
Simulated	solution

0 = 𝑓< + 𝑓> + 𝑓&?J + 𝑓3
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Sensitivity	of	𝑅" to	trapped	flux
as	a	function	of	the	RF	field

• Simulation • Experiment	(Hall)

At	𝑗E = 1 (black),	2	(red),	3	(blue),	and	4mA/µm2 (green)



Sensitivity	of	𝑅" to	trapped	flux
as	a	function	of	frequency

• Simulation • Experiment	(Oseroff)

Analytical	curve

Square-root

Plateau
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Conclusions	and	future	work

• Hysteretic	losses	might	explain	the	dependence	of	the	residual	resistance	
sensitivity	to	trapped	flux	on	the	RF	field.
• Our	approximations	are	consistent,	though	we	predict	dissipations	larger	than	the	
experimental	ones	by	a	factor	of	about	eight.
• The	collective	weak-pinning	model	predicts	three	distinct	regimes	for	the	
dissipation	as	a	function	of	frequency:	linear,	square-root,	and	a	plateau.

• Simulations	with	explicit	inclusion	of	impurities.
• Large	amplitudes,	grain	boundaries,	and	mixed	(strong	and	weak	pinning)	
scenarios.
• Experimental	check:	do	most	trapped	vortices	lie	perpendicular	to	the	interface?	
(We	have	assumed	vortices	that	are	normally	aligned	with	respect	to	the	
interface.)
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