Reconstruction Software in DUNE

Tingjun Yang FNAL

Nov 13, 2017

Introduction

- I will give an overview of the current reconstruction chain used by DUNE FD. A lot of the algorithms are shared with protoDUNE and other LArTPC experiments.
- You need to know how to setup larsoft/dunetpc. See previous tutorials. There are many wiki pages.
- I will focus on the TPC reconstruction. Alex Himmel will talk about the photon detector reconstruction.
- Outline
 - Overview of data products
 - Brief description of various reconstruction algorithms

Data products

- <u>raw::*</u> raw data
 - raw::RawDigit, raw::AuxDetDigit, raw::OpDetPulse, raw::OpDetWaveform, raw::Trigger, raw::BeamInfo, etc.
- <u>recob::*</u> reconstructed information
 - recob::Wire, recob::Hit, recob::Cluster, recob::EndPoint2D, recob::Vertex, recob::PFParticle, recob::Track, recob::Shower, recob::OpHit, recob::OpFlash, etc.
- <u>anab::*</u> information that is derived from reconstruction information
 - anab::Calorimetry, anab::ParticleID, anab::CosmicTag, anab::T0, etc.
- simb::* simulation information
 - simb::MCTruth, simb::MCParticle, simb::MCFlux, etc.
- Associations links between different data products
 - <u>https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Use_associations</u>

Get information from Doxygen

http://nusoft.fnal.gov/larsoft/doxsvn/html/index.html

If you want to get information for recob::Hit, type hit here

Get information from an art file

 lar -c eventdump.fcl /pnfs/dune/tape_backed/dunepro/mc/dune/full-reconstructed/01/89/47/00/ prodgenie_atmnu_max_dune10kt_1x2x6_0_20171102T160222_merged0.root -n 1

ProcessName	ModuleLabel	InstanceLabel	ClassName	size
GenieGen	generator		std::vector <simb::gtruth></simb::gtruth>	1
GenieGen	TriggerResults.		art::TriggerResults	i
GenieGen	generator		std::vector <sim::beamgateinfo></sim::beamgateinfo>	j1
GenieGen	rns		std::vector <art::rngsnapshot></art::rngsnapshot>	0
GenieGen	generator		std::vector <simb::mctruth></simb::mctruth>	1
GenieGen	generator		art::Assns <simb::mctruth,simb::mcflux,void></simb::mctruth,simb::mcflux,void>	1
GenieGen	generator		<pre>std::vector<simb::mcflux></simb::mcflux></pre>	1
GenieGen	generator		art::Assns <simb::mctruth,simb::gtruth,void></simb::mctruth,simb::gtruth,void>	1
G4	largeant		<pre>std::vector<sim::opdetbacktrackerrecord></sim::opdetbacktrackerrecord></pre>	.113
G4	rns		std::vector <art::rngsnapshot></art::rngsnapshot>	2
G4	TriggerResults.		art::TriggerResults	
G4	largeant		<pre>std::vector<simb::mcparticle></simb::mcparticle></pre>	.391
G4	largeant		std::vector <sim::auxdetsimchannel></sim::auxdetsimchannel>	0
G4	largeant		art::Assns <simb::mctruth,simb::mcparticle,void></simb::mctruth,simb::mcparticle,void>	.391
G4	largeant		<pre>std::vector<sim::simchannel></sim::simchannel></pre>	1181
G4	largeant		std::vector <sim::simphotonslite></sim::simphotonslite>	.113
Detsim	TriggerResults.		art::TriggerResults	· · · -
Detsim	opdigi		std::vector <raw::opdetwaveform></raw::opdetwaveform>	.618
Detsim	daq		std::vector <raw::rawdigit></raw::rawdigit>	4510
Detsim	rns		std::vector <art::rngsnapshot></art::rngsnapshot>	j1
Reco	TriggerResults.		art::TriggerResults	
Reco	trajcluster		<pre>std::vector<recob::vertex></recob::vertex></pre>	6
Reco	trajcluster		<pre>std::vector<anab::cosmictag></anab::cosmictag></pre>	0
Reco	pmtrajfit	kink	std::vector <recob::vertex></recob::vertex>	0
Reco	pandora		std::vector <recob::pcaxis></recob::pcaxis>	j1
Reco	pmtrack		std::vector <recob::vertex></recob::vertex>	9
Reco	pandoracalo		art::Assns <recob::track,anab::calorimetry,void></recob::track,anab::calorimetry,void>	24
Reco	pandora		art::Assns <recob::pfparticle,recob::spacepoint,void></recob::pfparticle,recob::spacepoint,void>	1224
Reco	pmtrackpid		art::Assns <recob::track,anab::particleid,void></recob::track,anab::particleid,void>	
Reco	pmtrajfit		std::vector <recob::vertex></recob::vertex>	0
Reco	pandora		std::vector <recob::vertex></recob::vertex>	11
Reco	pmtrack		art::Assns <recob::pfparticle,recob::vertex,void></recob::pfparticle,recob::vertex,void>	18
Reco	pmtracktccalo		std::vector <anab::calorimetry></anab::calorimetry>	45
Reco	pandoracalo		<pre>std::vector<anab::calorimetry></anab::calorimetry></pre>	24
Reco	pmtracktccalo		art::Assns <recob::track,anab::calorimetry,void></recob::track,anab::calorimetry,void>	45
Reco	hitfd		art::Assns <recob::wire,recob::hit,void></recob::wire,recob::hit,void>	1928
Reco	pmtrack	kink	art::Assns <recob::track,recob::vertex,void></recob::track,recob::vertex,void>	0
Reco	pandora		art::Assns <recob::pfparticle,recob::vertex,void></recob::pfparticle,recob::vertex,void>	11
Reco	pandora		art::Assns <recob::pfparticle,recob::seed,void></recob::pfparticle,recob::seed,void>	.773
Reco	pmtracktc	node	std::vector <recob::vertex></recob::vertex>	0

FD reconstruction fcl file

https://cdcvs.fnal.gov/redmine/projects/dunetpc/repository/revisions/develop/entry/fcl/dunefd/reco/standard_reco_dune10kt.fcl

2

3

76 dunefd pmalgtrackmaker:

BEGIN PROLOG

- srcs/dunetpc/fcl/dunefd/reco/standard_reco_dune10kt.fcl
 - 1 #include "services_dune.fcl" 2 #include "hitfindermodules dune.fcl" 3 #include "cluster dune.fcl"
 - 4 #include "trackfindermodules dune.fcl"
 - 5 #include "pandoramodules dune.fcl"
 - 6 #include "calorimetry dune10kt.fcl"
 - 7 #include "particleid.fcl"
 - 8 #include "mctrutht0matching.fcl"
 - 9 #include "t0reco.fcl"
 - 10 #include "opticaldetectormodules dune.fcl" 11 #include "trackshowerhits.fcl"
 - 12 #include "showerfindermodules dune.fcl"
 - 13 #include "emshower3d.fcl"
 - 14 #include "imagepatternalgs.fcl"
 - 15
 - 16 #include "tools_dune.fcl"
 - 17

89

90

128

129

134

136

138

139

140

141

18 process name: Reco

#hit reco gaushit,

hitfd. #cluster reco

#pandora

#pmatrack

#disambiguation

linecluster, trajcluster, #track shower split trkshowersplit,

pandoracalo, pandorapid,

pandora, #pandora stitcher goes here

pmtrajfit, pmtrajfitcalo, pmtrajfitpid,

pmtracktc, pmtracktccalo, pmtracktcpid,

pmtrajfittc, pmtrajfittccalo, pmtrajfittcpid,

pmtrack, pmtrackcalo, pmtrackpid,

- pmtrack:
- @local::dunefd pmalgtrackmaker @local::dune10kt calomc pmtrackcalo:
- 91 pmtrackpid: @local::standard chi2pid 121 reco: [rns, #optical hits and flashes ophit, opflash, 124 #TPC wire signals caldata,

77 dunefd pmalgtrackmaker.HitModuleLabel: 78 dunefd pmalgtrackmaker.ClusterModuleLabel: 79 dunefd pmalgtrackmaker.PMAlgTracking.FlipToBeam: 80 dunefd pmalgtrackmaker.PMAlgTracking.AutoFlip dQdx: 81 dunefd pmalgtrackmaker.PMAlgTracking.RunVertexing:

٠

- 82 dunefd pmalgtrackmaker.ProjectionMatchingAlg.HitWeightZ: 1.0
 - 83 dunefd pmalgtrackmaker.ProjectionMatchingAlg.HitWeightV: 1.0
 - 84 dunefd pmalgtrackmaker.ProjectionMatchingAlg.HitWeightU: 1.0

srcs/larreco/larreco/TrackFinder/trackfindermodules.fcl

srcs/dunetpc/dune/TrackFinderDUNE/trackfindermodules_dune.fcl

#include "trackfindermodules.fcl"

59 standard pmalgtrackmaker:

60	{				
61	module_type:	"PMAlgTrack	Maker"		
62	ProjectionMatchingAlg:	<pre>@local::standard_projectionmatchingalg</pre>			
63	PMAlgTracking:	<pre>@local::standard pmalgtracker</pre>			
64	PMAlgCosmicTagging:	<pre>@local::standard pmalgtagger</pre>			
65	PMAlgVertexing:	<pre>@local::standard_pmavertexalg</pre>			
66	PMAlgStitching:	<pre>@local::sta</pre>	indard_pmastitchalg		
67			#		
68	SaveOnlyBranchingVtx:	false	# use true to save only vertices interconnecting many tracks, otherwis		
69			# vertex is added to the front of each track		
70	SavePmaNodes:	false	# save track nodes (only for algorithm development purposes)		
71			#		
72	HitModuleLabel:	"hits"	# unclustered hits are used for tracks validation		
73	WireModuleLabel:	"caldata"	# deconvoluted adc is also used for tracks validation		
74					
75	ClusterModuleLabel:	"cluster"	# cluster module label, these clusters are used for track building		
76	EmClusterModuleLabel:		# EM-like clusters, will be excluded from tracking if provided		
77	1				

- srcs/larreco/larreco/TrackFinder/PMAlgTrackMaker module.cc
- 142 #shower reconstruction 143 blurredcluster, emtrkmichelid, emshower#, emshower3d, mergeemshower3d 144
 - Tingiun Yang, DUNE Physics Week, Fermilab

@local::standard_pmalgtrackmaker

true

true

false

"linecluster

"linecluster"

TPC Signal Formation

• More details: <u>http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1017-PUB.pdf</u>

Signal Processing

BNL SPICE ASIC simulation

- Filter noise and remove effects of field response and electronics response through deconvolution.
- It is important to take into account induced signals from far away electrons to recover ionization charge.
- Input: <u>raw::RawDigit</u>
- Output: recob::Wire
 - One per channel/wire
 - std::vector< float > Signal () ADC per tick
 - size_t NSignal () number of ticks

Hit Finder

- Default hit finder in LArSoft is GausHitFinder.
- Start from deconvoluted signals on wire and define areas above threshold known as "pulses".
- Once a pulse is found, a "n" Gaussian hypothesis is applied where "n" is defined by the number of peaks initially identified within the pulse.

- Input: <u>recob::Wire</u>
- Output: recob::Hit
 - float PeakTime () Time of the signal peak, in tick units.
 - float Integral () Charge
 - raw::ChannelID_t Channel () ID of the readout channel

3D reconstruction

• First discuss the 2D matching approach.

	2D cluster reco	3D matching (based on time)	Track/shower maker
Data products	recob::Cluster	recob::PFParticle	recob::Track recob::Shower recob::Vertex
Algorithms	(LineCluster) TrajCluster Pandora BlurredCluster	TrajCluster Pandora PMA	Pandora PMA KalmanTrack EMShower TrajCluster(shower only)

TrajCluster

- TrajCluster: 2nd generation LineCluster (ClusterCrawler).
- Trajectory (cluster) reconstruction starts from construction of a short "seed" of nearby trajectory points (TPs).
- Additional nearby TPs are attached to the leading edge of the trajectory if they are similar to the TPs already attached to it.
 - Using impact parameter, hit width and hit charge.
- Momentum estimate using Multiple Coulomb Scattering (MCSMom) for each trajectory
 - An valuable parameter for pattern recognition, tagging muons & showers
- Use low-momentum trajectories to form shower-like clusters.
- Input: recob::Hit
- Output: recob::Cluster, recob::EndPoint2D, recob::PFParticle, recob::Vertex, recob::Shower, etc.

One example

Different colors represents different clusters. Same color between views indicates matched clusters (PFParticle).

Tingjun Yang, DUNE Physics Week, Fermilab

Pandora

https://github.com/PandoraPFA

- Pandora is a well-established tool for fine-grain pattern recognition in high energy physics (future linear collider, LHC, LArTPCs)
- Supports multi-algorithm approach to automated and optimized pattern recognition.
- Takes hits as input. Outputs PFParticles with hierarchies
 - Reconstruct both track-like and shower-like PFParticles for further track/shower reconstruction.

- Input: recob::Hit
- Output: recob::Cluster, recob::EndPoint2D, recob::PFParticle, recob::Vertex, recob::SpacePoint, recob::Track, recob::Shower, etc.

Two Chains of Algorithms

- PandoraCosmic:
 - more strongly track-oriented; showers assumed to be delta rays, added as daughters of the muons; muon vertices at track high-y coordinate.
- PandoraNu:
 - more careful to find interaction vertex and to protect particles emerging from vertex. Careful treatment to address track/shower tension.

Tingjun Yang, DUNE Physics Week, Fermilab

Projection Matching Algorithm (PMA)

- Instead of building 3D object by matching 2D hits between different views, build 3D object by minimizing distance the object's 2D projection to 2D hits.
- Fit vertex and reoptimize tracks.

Reconstructed event examples: π^- @ 2GeV/c, 35t geometry, vertices indicated with circles, red track: incident particle.

Tracking Efficiency

- The efficiency to reconstruct muons in the neutrino beam is very high.
- The reconstructed track length matches true length very well.

Calorimetry reconstruction

- Convert dQ/dx to dE/dx after correcting for electron lifetime and recombination effects - crucial for particle identification in LArTPC.
- Input: recob::Track
- Output: <u>anab::Calorimetry</u>
 - const std::vector< double > & dEdx ()
 - const std::vector< double > & ResidualRange ()

p->nubar+K

Tingjun Yang, DUNE Physics Week, Fermilab

Particle Identification

Input: anab::Calorimetry

Output: anab::ParticleID

- Calorimetry information provide powerful particle ID.
- <Ai> for each track
- Ai = $(dE/dx)_{calo} R^{0.42}$
 - R is residual range

arXiv:1306.1712

CNN in LArTPC reconstruction

- ProtoDUNE team is pioneering "pixel level" feature labeling.
- Tensorflow is recently included in the LArSoft package suite.
- Input: recob::Wire, recob::Hit, recob::Cluster
- Output: anab::FeatureVector

Shower Reconstruction

- Current shower reconstruction in DUNE:
 - Pandora pattern recognition
 - CNN track/shower ID
 - EMShower (shower maker)
- Average dE/dx of the first 1 cm of shower provides information for e/gamma separation.

Wire-Cell Reconstruction

- 3D Tomographic reconstruction
- Reduce degeneracy by using the charge information: same charge in a voxel is measured 3 times by wires on the three wire planes

Compressed sensing in wirecell

- L1 regularization most physics signal is zero (sparse)
- More accurate reconstructed information
- Huge improvement on speed: a few hours -> half a minute
- Good progress on Wire Cell Toolkit and LArSoft integration

Converting 2D hits to 3D points (SpacePointSolver)

- A new method to convert 2D hits to 3D points
 - Related to WireCell, but independent work
- Problem is to distribute collection hit charge over the coincident induction wires to minimize errors on induction wire predictions
 - Regularization helps 3D imagine reconstruction

- O (10s)/event for the FD neutrino sample
- Input: recob::Hit
- Output: recob:SpacePoint

Other reconstruction/analysis algorithms

- Neutrino energy reconstruction
 - Works well for nue CC and numu CC events (DUNEdoc-2278)
 - Information saved in ntuples.
 - We need to create data products to save information in art files action item for this week.
- CVN neutrino selection
 - Provides CVN scores for nueCC, numuCC, nutauCC, NC events.
 - Gives best sensitivity for oscillation analysis.
 - We need to create data products to save information in art files action item for this week.

CI validation

- <u>http://dbweb6.fnal.gov:8080/TestCl/app/ns:dune/build_detail/phase_details?build_id=lar_ci_test/</u> 913&platform=Linux%202.6.32-696.1.1.el6.x86_64&phase=ci_validation&buildtype=slf6%20e14:prof
- Automatically submit jobs to run standard neutrino simulation, reconstruction and evaluation of tracking efficiency for different reconstruction algorithms and particles.
- Plan to include validation of shower reconstruction as well.

Tingjun Yang, DUNE Physics Week, Fermilab

Conclusions

- After many years of dedicated efforts, the event reconstruction in liquid argon TPC has reached an advanced level.
- There is a fully automatic reconstruction chain in DUNE to do signal processing, pattern recognition, track and shower reconstruction and particle identification.
- The common framework LArSoft has boosted the reconstruction development.