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Statistics is a branch of mathematics dealing with the collection,

me;ggggcgpﬁ analysis, interpretation, presentation, and organization of data.[1[2]
* A collection of methods to extract meaning from data.

— There are many, many methods.

— The question you need to answer - is the method I'm using
appropriate to my situation?

— Make sure you’re clear about what you did, so others can
interpret your results.

* You are making an argument using data.

* The answers are never simply “yes” or “no”
— There is always a degree of uncertainty or level of agreement.



Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.

* Example: coin flips. Heads = 0, tails = 1
— Clearly not normally distributed.

 However, if we look at the distribution of the means:
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* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.
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Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.

* Example: coin flips. Heads = 0, tails = 1
— Clearly not normally distributed.
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Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.
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— Clearly not normally distributed.
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Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.

* Example: coin flips. Heads = 0, tails = 1
— Clearly not normally distributed.

 However, if we look at the distribution of the means:
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Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.

* Example: coin flips. Heads = 0, tails = 1
— Clearly not normally distributed.

 However, if we look at the distribution of the means:
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Central Limit Theorem

* The sum of a sufficiently large number of independent random variables.

— It does not matter what distribution the underlying random variables come
from.

* Example: coin flips. Heads = 0, tails = 1
— Clearly not normally distributed.

 However, if we look at the distribution of the means:
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* This is why, under most circumstances, we treat errors as
“Gaussian’...because most of the time it works.

 When doesn’t it work?
— Mostly when the stats are too low, plus a few other edge cases.

N (x|p, o) =

dP/dx or f(x) or G(x) or other notations
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dP/dx or f(x) or G(x) or other notations

. probability that x is
N(:I’J‘,M, U)dx — betweenaand b
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__ probability that x is
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How to Ask a Statistical Question

* The term for this is a “hypothesis test.”

* H,: Null hypothesis

— The specific case, such as A and B are the same

* Hj: Alternative hypothesis
— The alternative to the null - A and B are different

 Significance level

— How high a rate of false positives (rejecting the null, even if it
is true) can you tolerate.

—|a = 0.05|is common, but often not sufficient for physics.
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Are two means the same?

H1 =— 2.5 0.1 Ho — 3.1 £0.3

 H,: The difference between the meansis 0
— Hy-p; =0

 H;: The means are different
— -1 %0

* [ can tolerate a|5% chance|of saying they are different,
even if they really are the same.

* Now, let’s do the test.
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z
pzl—/ N(xz,1)dx
—Z

* This integral doesn’t have an analytical solution, but we

need it all the time, so it’s results are readily available as
the “error function”

// Z-score (sigmas) —-> p-value

root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081




A Little Vocabulary

Z is our test statistic

— A single number we calculate as a “summary” of our data.

You want to know how the test statistic is supposed to be
distributed under the null hypothesis.

— You need to know the distribution to calculate a p-value.

Generally, there are assumptions that must be met for
this to be true.

If the conditions are not met, or there is no simple test
statistic, all is not lost.

— There are “non-parametric” techniques.
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Is there signal above the background?

Let’s say we're members of a neutrino experiment called
SUNE

— The Statistical Underground Neutrino Experiment

Thanks to our powerful off-axis design we expect only 1
background event.
— And since this is SOVA we have no systematic errors!

We open the box and observe 6 events.

Did we observe v, appearance?

18



Let’s translate into a hypothesis test:

H,: Our observation is consistent with the
background.
— X=B

H;: There is a signal above our background
estimate.
— X>B

We are making an important claim, so we require
a=0.0027 (3 o)

// p-value -> sigmas
root [6] TMath::NormQuantile(l - 0.0027/2)
(Double_t)3.0




* How is this different from the mean test?

— The numbers involved are small.
— This test is 1-sided instead of 2-sided

— The distribution is not Gaussian, it is Poisson.

* How do we know it’s Poisson?

— This distribution describes the number of independent
events (neutrinos in the FD)

— occurring within a fixed time interval (periods 1&2).

— This almost always describes neutrino physics data.

* But, if you have many events, then the Poisson just
becomes...
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* First - what is our test statistic?
— Just the number of observed events.

— We know, under the null hypothesis, how that should be
distributed - Poisson, rate 1

* We need to calculate a p-value to compare to our a.
— To do that, we again need to integrate a distribution.

p= ZP(zE, 1)

T T T T T T T T T T T T T T

Events 21



* First - what is our test statistic?
— Just the number of observed events.

— We know, under the null hypothesis, how that should be
distributed - Poisson, rate 1

* We need to calculate a p-value to compare to our a.
— To do that, we again need to integrate a distribution.
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* Again, let’s take advantage of built-in functions which
already have the integral of the Poisson distribution.

root [14] 1 - ROOT::Math::poisson_cdf(5,1)
(double) 0.00059418

* p(0.000594) <a (0.0027)
— We reject the null hypothesis.

— We have evidence of something other than background at the

3o0-level.
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Data/MC Agreement

* Does the model (red) describe the data (black)?
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Data/MC Agreement

* [s the data consistent with having been drawn from the
model, given its uncertainties?
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Data/MC Agreement

* Hypothesis test:

— H,: The data was drawn from the model in red.

— H,: The data is not consistent with the model.
— a=0.05
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* This means that, assuming the null is true, we know what

T's distribution should be: the chisquared.
fu(x) X2
0.5
0.4+
0.3+

N

0.14
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0.0

* This means that we can calculate T for our histograms,
and then look up that value in this distribution to get a p-
value.

— Note that y? depends on the number of “degrees of freedom”

— For a histogram, Ndof = number of bins.
28



T def CalcChi2Chme, hdata)
s ef CalcChi2(Chmc, hdata):
100 + NdOf = 2@ chiz = 0
+ p = 0.079 for i‘in r'ange(l,‘hmc.Geth?nsX()+1):
80} el = hmc.GetBinContent(i)
i i ol = hdata.GetBinContent(i)
60; ] sigma = sqgrt(ei)
- . chi2z += (el - 01)**2 / sigma**2
aok . return chi2
i ] chi2 = CalcChi2(hpred, hrand)
201 " Ndof = hpred.GetNbinsX()
i + '1 |p = ™ath.Prob(chi2, Ndof)
0 | l . | PR
0 5 10 15 20

* With p of 0.08, we fail to reject the H,.
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120 .
def CalcChi2Chmc, hdata):

chi2z = @
for 1 in range(1l, hmc.GetNbinsX()+1):
el = hmc.GetBinContent(i)
ol = hdata.GetBinContent(i)
sigma = sqrt(ei)
chi2 += (ei - oi)**2 / sigma**2
return chi2

100F

80t

60}

40f
chi2 = CalcChi2Chpred, hrand)

20f

Ndof = hpred.GetNbinsX()
- . p = TMath.Prob(chi2, Ndof)
0 PR P | PR | - PR 1 P PR
0 5 10 15 20

 Statistical tests are not a substitute for looking at the
data!

* The results from a test are piece of the argument - they
are not an answer themselves.
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Parameter Estimation

* Up until now, we've been asking yes-or-no questions.

 (Often, what we want is to measure a value - this is

parameter estimation.

— Also sometimes called “regression”
— In addition to data, this requires a model.
— The parameters are the values which describe that model.

— For example, a line is described by it’s slope and y-intercept.

//
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* S0, how do we estimate parameters given a model and
data?

e We use a method called maximum likelihood

— The key to which is the likelihood function:
0)

L(0) = P(your data,
— The probability of your data assuming these parameters are
true.

32
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* Let's extend a familiar example.

* Now, we have a model, with a single parameter 6.



* Now, we need a likelihood function.

 To start, let’'s assume Gaussian errors.
N

£ =P(0)9) =[] 'O B/

\ P of each bin,
assuming each is a

normal distribution.




Now, we need a likelihood function.

To start, let’s assume Gaussian errors.

L = P( 0|9 o(0i—Ei(0))°/o*

\

P of each bin,
assuming each is a

normal distribution.

In practice, instead of maximizing likelihood,
we minimize -2 In L

— Because addition is easier than multiplication.

_anﬁ((g) _ Z (Oi — Ez‘(‘g))Q

0-2

35



Now, we need a likelihood function.

To start, let’s assume Gaussian errors.

L = P( 0|9 o(0i—Ei(0))°/o*

\ P of each bin,
assuming each is a

normal distribution.

In practice, instead of maximizing likelihood,
we minimize -2 In L

— Because addition is easier than multiplication.

—2InL(0) = (O: = B:(8))” _ X’

0-2
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» We can then calculate y? for each possible value of 6.
— Both of these are pretty bad.
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« We can then calculate y? for each possible value of 6.
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« We find the minimum y? (maximum L) when 6 = 1.054

* This is our maximum likelihood estimate, or “best fit”

39



100

80

(o))
o
1 1 1 I 1 | 1 I I I I l I I I

0.9 1T 1.1 1.2

O
o

* We can also ask, “how good a fit is this?”
— Is this a reasonable model of this data?

* Thatis just the hypothesis test we did before.
— But - you need to subtract 1 for each free parameter in the fit,
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* An even better question - what is our uncertainty on our
estimate?
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Building Confidence Intervals

* Here we’ll discuss “frequentist”
confidence intervals, because that’s
what you will most often see.

Definition of an Confidence Interval
at level a:
If we repeat the experiment numerous times,

a of the intervals we draw will cover the true
value.

* This isn’t really what you wanted to

know, but it has been rigorously
defined.

* There are many ways to construct
CI's depending on the circumstance. The Truth

42
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* Ifyou problem has all Gaussian errors, then the distribution of
the estimator of the parameter is also Gaussian.
— Presented without proof, since that’s what the PDG does, too.

— This is the case for our example, too. =



100

UL I ]
60 —
- 6=1.056 .
40} /
: S e -
0.8 0.9 1 1.1 1.2
0

« We will use the likelihood distribution to draw the CI.

« We allow inside our CI any values of 68 with small values Ay? relative
to the best fit, and we exclude values of 6 with larger values of Ay2.
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* The question you should be asking:

 How do I know what “up value” to choose to know which
@’s are in and which are out?
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* Here is where we take advantage of everything being

(Gaussian.

* As with the hypothesis tests, we know what distribution

Ax? should have, so we can look it up.

e This table comes from the PDG:

Table 37.2: Values of Ax? or 2AIn L corresponding to a coverage probability
1 — « in the large data sample limit, for joint estimation of m parameters.

(1—a) (%)

m=1 m=2 m=3<\

The level of the ClI
you want to draw.

~ 68.27
90.
95.
95.45
99.
99.73

930  3.53 - .
071 461  6.25 € number

3.84 509 7 89 of dimensions.
4.00 6.18 8.03
6.63 921 11.34
9.00 11.83 14.16
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This 68% (e.g. 10) C.L. is what we generally report as an error
band.

So, in Stats-ese: ML Estimate 1.056 with 68% CL 1.022-1.090
In Physic-ese: 1.056 = 0.034 47



Choose your own adventure...

1.

2
3
4,
5

Confidence intervals in the real world
Multiple Trials

Nuisance Parameters

Frequentist vs. Bayesian Statistics

Feldman-Cousins

48



A little more realism

 (Choice of likelihood function

— It's rare in neutrino physics that we have so much data that y? is
valid.

— Instead, we use an L which is based on bins with Poisson errors.

N

—2InL(h) = Z (Oi — Ei(‘g))Z 2

2 — X

o

&

N

—21n)\(9):22[uz—(e)—ni+niln ~ } ,

1i(0)

If you have bins with < 30
entries, you probably need this.
Just look it up in the PDG.

1=1
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* More variables? 1-a) (%) | m=1 m=2 m=3
— If you have 2 variables, and you want to 68.27 100 230 353
show 2 variables, then it’s 90. 271 4.61 6.25
straightforward. . 384 599 7.82
_ , . 95.45 400 618  8.03
— Just pick the right up value, and points 99, 663 9921 11.34
below it are in. 99.73 9.00 11.83  14.16
5 gx10°
I 9
S B 8
N 2.6 5
© I
S I 6
O 24 S
F =l
S L 4
NE% I 3
2.2[
< - 2
I 1
0

av
~
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* More variables? 1-a) (%) | m=1 m=2 m=3
— If you have 2 variables, and you want to 68.27 100 230 353
show 2 variables, then it’s 90. 2.71 6.25
straightforward. . 384 599 7.82
_ , . 95.45 400 6.18  8.03
— Just pick the right up value, and points 99, 6.63 991 11.34
below it are in. 99.73 9.00 11.83  14.16
-3
0810
I 9
< B 8
N 2.6 5
© I
S : 6
O 24+ 5
F b
N— L 4
NE% I 3
2.2~
<J - 2
I 1
0

av
~
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* More variables? 1-o) (%) | me1 m—2 m=3
— If you have 2 variables, and you want to 68.27 100 230 353
show 2 variables, then it’s 90. 2.711 6.25
straightforward. . 384 599 7.82
_ , . 95.45 400  6.18  8.03
— Just pick the right up value, and points 99, 663 9921 11.34
below it are in. 99.73 9.00 11.83 14.16
2
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Real Life Examples

MINQOS 2008

Anomalous FD Distributions

Z. Isvan
L L L L B 22— T T T
! 1 [ MINOS PRELIMINARY ~* Data i
— 1 10 *+='No Oscillations MC -
MINOS PRELIMINARY ] :fa' DEetecth ~ AW=25x108V2 ]
Far Detector . of ow ":2;9\! eam 1
20 . - 3.2x 107 PoT ot ]
2| Low Ent;orgy Beam ] g | X 0 o "“I_ ]
§ [ 32x107PoT 3 ot :
W [ —Data i i, ]
[ “**No Oscillations MC - ] ]

10— Am*=2.5x107%V2 1
% 1 2 3 Z 5 2 3 7 5
Track End R Position (m) Track Vertex R Position (m)

» Track End R has ~3.3¢ discrepancy at 4.1m (26 events expected 9 events seen
discrepancy of (26-9)/1/26=3.3c)!

> Essentially all the missing events are in a single Track End R bin.

» Vertex R distribution also shows discrepancy in region r>2m.
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Real Life Examples

T2K 2011
Vertex distribution of ve candidate events
2000 ~peam direction 2000
1000 1000 | §
£ | £ | * i
) - o I o. :
> al N o =
< OFf x Or 5
() I QO .
- T [ . :
() O :
> > :
-1000 F -1000
° .
-2000 T T Y _2000 i " i i | " " " " | A " N A
-2000 -1000 0 1000 2000 0 1000 2000 3000,
Vertex X (cm) Vertex R” (cm) x 10
These events are clustered at large R 7 Event outside FV
— Perform several checks. for example
* Check distribution of events outside FV — no indication of BG contamination
* Check distribution of OD events — no indication of BG contamination
* K.S. test on the R2 distribution yields a p-value of 0.03




* Nuisance parameters

— Often your likelihood depends on more parameters than you
want to present.

— Extra parameters can be physics or systematic uncertainties.

* For example, in the NOVA joint fit we do:
(Am?, 6,5, 83, §, systematic errors) — (0,3, 6)

* Two different approaches:
— Profiling
— Marginalizing

57



* Profiling
— Take the best fit in all parameters you are not showing at each
point you do show.

— More common, works under certain assumptions.
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Marginalizing
— Integrate up all the values you are not showing.
— Shows up more in Bayesian analyses.
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Frequentist

* Apply solid mathematical rigor to answer a question that
nobody cares about.

Bayesian

* Answers the question everyone is really interested in
using assumptions no one believes.
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Frequentist

The true value of a measurement is an unknown constant.

Report the probability of experimental outcomes, given a
value of that constant.

Use that to construct a confidence interval which will contain
the true value in « fraction of experiments.

Bayesian

The true value of a measurement is a random variable.
Before the measurement, have a “prior” PDF of that variable.

After the measurement, update to a “posterior” PDF using
the data collected.



Frequentist

-

| 1 1 l 1 ] 1 l 1 1 1 I 1 1 1 I ] 1 1 I 1 1 1 l 1 1 1 l 1 1 1 I

120 140 160 180 200 220 240 260
height h (m)

h=(158 £ 20) m

Bayesian

-

| | | I | ! 1 I 1 | | | | | ! I ! 1 | | | | I | ! 1 l 1 | | I

I
120 140 160 180 200 220 240 260
height h (m)

h = (158 £ 20) m




In the real world:
— This is from the latest T2K PRD, arXiv:1707.01048

-3
o 34E
S [ — Baysian90% - Bayesian 68%
g - » Bayesian best fit —— Frequentist 90%
3 -
L = Frequentist 68% »  Frequentist best fit
2.8~
2.6
2.4
28 i | | N ] f
4 0.45 0.5 0.55 0.6 0.65
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 What if you can’t trust the values from the PDG?

— They don’t have the right coverage:
a 90% C.L. is actually an 85% C.L.

 Commonly happens when statistics are low and the
problem has a physical boundary.

— Happens a lot in neutrino physics since 0 < sin“26< 1
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Feldman-Cousins

* The solution is a technique called Feldman-Cousins

* From a paper called “A Unified Approach to the Classical
Statistical Analysis of Small Signals”

— by Gary Feldman and Bob Cousins
— Phys. Rev. D57 (1998) 3873

* Let’s walk through an example.
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* Areal-life example from the MINOS anti-v, disappearance
analysis circa 2010.

Up-values above nominal when 2 2 Up-values below nominal close
there is a degeneracy... Ax - Ax to a physical boundary...
Contours are looser since the c gaus Contours are tighter since we

have extra information.

information is more ambiguous.

&

%) 0.5
@

()

- 0

£
Al ©
- -0.5
<]
-1
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Conclusion

* ['ve tried to show the statistical underpinnings of some of the
most common statistical techniques we use.
— But there are many, many more possible techniques.

— There are numerous alternative ways to do everything I have
presented here.

* Some general advice: use the simplest method that is
correct, but no simpler.

— If you use a technique that requires assumptions that you cannot
meet, your results will be questioned.

— But, if you use a more complicated technique, be prepared to
explain how it works and why you chose it.

* [ highly recommend the PDG statistics section as a place to
find statistical techniques which are “commonly accepted” in
physics.
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Backups
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1 =25+01 ps=31+0.3
X = Ho — U1 = 0.0

« We know, from the central limit theorem, that means are
normally distributed.

— The difference between means is, too.

— The standard deviation of that difference is:

Olip—piy = \/022 +o0;, =0.32

* Now the question is: Is 0.6 significantly different from 0 if

it comes from a normal distribution with o = 0.32?

70



 What we are asking is: how likely is it that we would get

our result, or something more extreme assuming the
null hypothesis is true?

— This is the definition of p-value, which we compare to our a.

“different from” means we are making a “two-sided” test:

— [fwe setan a = 0.05, we want to know if our value falls into
the central 1-a or 95% of the distribution.

+— 65% of data —|

/ 95% of data \

99.7% of data N

71



* To start, we calculate a “Z-score,” which effectively

converts from our specific normal distribution to the
canonical /N(0,1):

X —pup 0.6—0
o 0.32

A

This is what we
mean when we
say “1.88 ¢”




 But, what does that Z-score mean?
— In other words, what is it’s p-value we can compare to a?

— What fraction of values in the distribution are more extreme

than ours?
— 7 o0
p= / N(z,1)dx + / N(z,1)dx
— 00 Z

* Butinfinity is hard, so we can take advantage of the fact
that probabilities all add up to 1 to do the inverse:

Z
pzl—/ N (x,1)dx
—Z
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z
pzl—/ N(xz,1)dx
—Z

* This integral doesn’t have an analytical solution, but we
need it all the time, so it’s results are readily available as
the “error function”

// Z-score (sigmas) -> p-value
root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081




H1 =— 2.5 0.1 Ho =— 3.1 0.3

With p = 0.06, we have failed to reject the null hypothesis

ata = 0.05.
“These two means are consistent at the 95% level

Or, we might say:
— “These means differ by 1.88c” or
— “They are consistent at the 94% level”
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* Now, we need to choose a test statistic.

— There are several choices for this problem.
— Which one is the right one depends on the circumstance.

* A good first guess: try a chisquare (x?) test.
— This is what the test statistic looks like:

N
(0i — E4)7
1= Z 2

— Squared difference between the histograms, normalized by
the expected uncertainty.
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* Why this test statistic?

— Let’s see how it behaves assuming H,,.

— The data is drawn randomly from the model, so each bin, O,
should be drawn randomly from the model:

Oi ~ N(Eu O-)

* Given that, the argument in the sum of the chisquare
should look familiar - it is a Z-score, squared.

N
B (0; — E;)? X — o
T_Z 52 Z =

O
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