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• A	collection	of	methods	to	extract	meaning	from	data.
– There	are	many,	many	methods.
– The	question	you	need	to	answer	– is	the	method	I’m	using	
appropriate	to	my	situation?

– Make	sure	you’re	clear	about	what	you	did,	so	others	can	
interpret	your	results.

• You	are	making	an	argument	using	data.

• The	answers	are	never	simply	“yes”	or	“no”
– There	is	always	a	degree	of	uncertainty	or	level	of	agreement.
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Central	Limit	Theorem
• The	sum	of	a	sufficiently	large	number	of independent	random	variables.

– It	does	not	matter	what	distribution	the	underlying	random	variables	come	
from.

• Example:	coin	flips.	Heads	=	0,	tails	=	1
– Clearly	not	normally	distributed.	

• However,	if	we	look	at	the	distribution	of	the	means:
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• This	is	why,	under	most	circumstances,	we	treat	errors	as	
“Gaussian”…because	most	of	the	time	it	works.

• When	doesn’t	it	work?	
– Mostly	when	the	stats	are	too	low,	plus	a	few	other	edge	cases.
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How	to	Ask	a	Statistical	Question

• The	term	for	this	is	a	“hypothesis	test.”
• H0:	Null	hypothesis

– The	specific	case,	such	as	A	and	B	are	the	same

• H1:	Alternative	hypothesis
– The	alternative	to	the	null	– A	and	B	are	different

• Significance	level
– How	high	a	rate	of	false	positives	(rejecting	the	null,	even	if	it	
is	true)	can	you	tolerate.

– α =	0.05	is	common,	but	often	not	sufficient	for	physics.
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Are	two	means	the	same?

• H0:	The	difference	between	the	means	is	0
– µ2 - µ1 =	0

• H1:	The	means	are	different
– µ2 - µ1 ≠	0

• I	can	tolerate	a	5%	chance	of	saying	they	are	different,	
even	if	they	really	are	the	same.

• Now,	let’s	do	the	test.
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µ1 = 2.5± 0.1 µ2 = 3.1± 0.3
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• This	integral	doesn’t	have	an	analytical	solution,	but	we	
need	it	all	the	time,	so	it’s	results	are	readily	available	as	
the	“error	function”
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// Z-score (sigmas) -> p-value

root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081

p = 1�
Z Z

�Z
N (x, 1)dx



A	Little	Vocabulary

• Z is	our	test	statistic
– A	single	number	we	calculate	as	a	“summary”	of	our	data.

• You	want	to	know	how	the	test	statistic	is	supposed	to	be	
distributed	under	the	null	hypothesis.
– You	need	to	know	the	distribution	to	calculate	a	p-value.

• Generally,	there	are	assumptions	that	must	be	met for	
this	to	be	true.

• If	the	conditions	are	not	met,	or	there	is	no	simple	test	
statistic,	all	is	not	lost.
– There	are	“non-parametric”	techniques.
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Is	there	signal	above	the	background?

• Let’s	say	we’re	members	of	a	neutrino	experiment	called	
SUNE
– The	Statistical	Underground	Neutrino	Experiment

• Thanks	to	our	powerful	off-axis	design	we	expect	only	1	
background	event.
– And	since	this	is	SOvA we	have	no	systematic	errors!

• We	open	the	box	and	observe	6	events.	
• Did	we	observe	νe appearance?
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• Let’s	translate	into	a	hypothesis	test:
• H0:	Our	observation	is	consistent	with	the	
background.
– X =	B

• H1:	There	is	a	signal	above	our	background	
estimate.
– X >	B

• We	are	making	an	important	claim,	so	we	require	
α =	0.0027	(3	σ)
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// p-value -> sigmas
root [6] TMath::NormQuantile(1 - 0.0027/2)
(Double_t)3.0



• How	is	this	different	from	the	mean	test?
– The	numbers	involved	are	small.
– This	test	is	1-sided	instead	of	2-sided
– The	distribution	is	not	Gaussian,	it	is	Poisson.

• How	do	we	know	it’s	Poisson?
– This	distribution	describes	the	number	of	independent	
events (neutrinos	in	the	FD)

– occurring	within	a	fixed	time	interval (periods	1&2).
– This	almost	always	describes	neutrino	physics	data.

• But,	if	you	have	many	events,	then	the	Poisson	just	
becomes…

20



• First	– what	is	our	test	statistic?
– Just	the	number	of	observed	events.
– We	know,	under	the	null	hypothesis,	how	that	should	be	
distributed	– Poisson,	rate	1

• We	need	to	calculate	a	p-value	to	compare	to	our	α.
– To	do	that,	we	again	need	to	integrate	a	distribution.
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• Again,	let’s	take	advantage	of	built-in	functions	which	
already	have	the	integral	of	the	Poisson	distribution.

• p	(0.000594)	<	α (0.0027)	
– We	reject	the	null	hypothesis.
– We	have	evidence	of	something	other	than	background	at	the	
3σ-level.
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root [14] 1 - ROOT::Math::poisson_cdf(5,1)
(double) 0.00059418



Data/MC	Agreement

• Does	the	model	(red)	describe	the	data	(black)?
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Data/MC	Agreement

• Is	the	data	consistent	with	having	been	drawn	from	the	
model,	given	its	uncertainties?
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Data/MC	Agreement
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• Hypothesis	test:
– H0:	The	data	was	drawn	from	the	model	in	red.
– H1:	The	data	is	not	consistent	with	the	model.
– α =	0.05
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• This	means	that,	assuming	the	null	is	true,	we	know	what	
T’s	distribution	should	be:	the	chisquared.

• This	means	that	we	can	calculate	T for	our	histograms,	
and	then	look	up	that	value	in	this	distribution	to	get	a	p-
value.
– Note	that	χ2 depends	on	the	number	of	“degrees	of	freedom”
– For	a	histogram,	Ndof =	number	of	bins.
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T =
NX

Z2 s �2(N)



• With	p of	0.08,	we	fail	to	reject	the	H0.
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chi2 = 29.5
Ndof = 20
p = 0.079



• Statistical	tests	are	not	a	substitute	for	looking	at	the	
data!

• The	results	from	a	test	are	piece	of	the	argument	– they	
are	not	an	answer	themselves.
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chi2 = 29.8
Ndof = 20
p = 0.074



Parameter	Estimation
• Up	until	now,	we’ve	been	asking	yes-or-no	questions.

• Often,	what	we	want	is	to	measure	a	value	– this	is	
parameter	estimation.
– Also	sometimes	called	“regression”
– In	addition	to	data,	this	requires	a	model.
– The	parameters	are	the	values	which	describe	that	model.
– For	example,	a	line	is	described	by	it’s	slope and	y-intercept.
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• So,	how	do	we	estimate	parameters	given	a	model	and	
data?	

• We	use	a	method	called	maximum	likelihood
– The	key	to	which	is	the	likelihood	function:

– The	probability	of	your	data	assuming	these	parameters	are	
true.
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L(~✓) = P (your data|~✓)



• Let’s	extend	a	familiar	example.
• Now,	we	have	a	model,	with	a	single	parameter	θ.
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θ =	2

θ =	0.5



• Now,	we	need	a	likelihood	function.

• To	start,	let’s	assume	Gaussian	errors.

• In	practice,	instead	of	maximizing	likelihood,	
we	minimize	-2	ln	L
– Because	addition	is	easier	than	multiplication.
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L = P ( ~O|✓) =
NY

e(Oi�Ei(✓))
2/�2

P	of	each	bin,	
assuming	each	is	a	
normal	distribution.
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• We	can	then	calculate	χ2 for	each	possible	value	of	θ.
– Both	of	these	are	pretty	bad.
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θ =	2,	χ2 =	431

θ =	0.5,	χ2 =	588



• We	can	then	calculate	χ2 for	each	possible	value	of	θ.
– But	30	is	pretty	good.
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θ =	2,	χ2 =	431

θ =	0.5,	χ2 =	588

θ =	1,	χ2 =	30



• We	find	the	minimum	χ2 (maximum	L)	when	θ =	1.054
• This	is	our	maximum	likelihood	estimate,	or	“best	fit”
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θ =	1.056



• We	can	also	ask,	“how	good	a	fit	is	this?”
– Is	this	a	reasonable	model	of	this	data?

• That	is	just	the	hypothesis	test	we	did	before.
– But	– you	need	to	subtract	1	for	each	free	parameter	in	the	fit.40

θ =	1.056

chi2 = 26.7
Ndof = 19
p = 0.11



• An	even	better	question	– what	is	our	uncertainty	on	our	
estimate?
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θ =	1.056



Building	Confidence	Intervals

• Here	we’ll	discuss	“frequentist”	
confidence	intervals,	because	that’s	
what	you	will	most	often	see.

Definition	of	an	Confidence	Interval
at	level	α:

If	we	repeat	the	experiment	numerous	times,	
α of	the	intervals	we	draw	will	cover	the	true	

value.

• This	isn’t	really	what	you	wanted	to	
know,	but	it	has	been	rigorously	
defined.

• There	are	many	ways	to	construct	
CI’s	depending	on	the	circumstance.	
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The	Truth



• If	you	problem	has	all	Gaussian	errors,	then	the	distribution	of	
the	estimator	of	the	parameter	is	also Gaussian.
– Presented	without	proof,	since	that’s	what	the	PDG	does,	too.
– This	is	the	case	for	our	example,	too. 43

θ =	1.056



• We	will	use	the	likelihood	distribution	to	draw	the	CI.

• We	allow	inside	our	CI	any	values	of	θwith	small	values	Δχ2 relative	
to	the	best	fit,	and	we	exclude	values	of	θwith	larger	values	of	Δχ2.
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θ =	1.056

Δχ2



• The	question	you	should	be	asking:

• How	do	I	know	what	“up	value”	to	choose	to	know	which	
θ’s	are	in	and	which	are	out?
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θ =	1.056

Δχ2



• Here	is	where	we	take	advantage	of	everything	being	
Gaussian.

• As	with	the	hypothesis	tests,	we	know	what	distribution	
Δχ2 should	have,	so	we	can	look	it	up.	

• This	table	comes	from	the	PDG:
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The	level	of	the	CI	
you	want	to	draw.

The	number	
of	dimensions.



• This	68%	(e.g.	1σ) C.L.	is	what	we	generally	report	as	an	error	
band.

• So,	in	Stats-ese:	ML	Estimate	1.056	with	68%	CL	1.022-1.090

• In	Physic-ese:	1.056	± 0.034 47

Δχ2	=	1

68%	C.L.	(1.022	– 1.090)



Choose	your	own	adventure…

1. Confidence	intervals	in	the	real	world
2. Multiple	Trials

3. Nuisance	Parameters
4. Frequentist	vs.	Bayesian	Statistics
5. Feldman-Cousins
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A	little	more	realism

• Choice	of	likelihood	function
– It’s	rare	in	neutrino	physics	that	we	have	so	much	data	that	χ2 is	
valid.

– Instead,	we	use	an	Lwhich	is	based	on	bins	with	Poisson	errors.
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�2 lnL(✓) =
NX (Oi � Ei(✓))

2

�2
= �2

If	you	have	bins	with	<	30	
entries,	you	probably	need	this.	
Just	look	it	up	in	the	PDG.



• More	variables?
– If	you	have	2	variables,	and	you	want	to	
show	2	variables,	then	it’s	
straightforward.

– Just	pick	the	right	up	value,	and	points	
below	it	are	in.
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• Also	– be	warry	of	the	“look	
elsewhere”	effect.
– More	often	a	problem	for	us	
when	looking	at	data-MC	
comparisons.

https://xkcd.com/882/
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Real	Life	Examples
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MINOS	2008



Real	Life	Examples
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T2K	2011



• Nuisance	parameters
– Often	your	likelihood	depends	on	more	parameters	than	you	
want	to	present.

– Extra	parameters	can	be	physics	or	systematic	uncertainties.

• For	example,	in	the	NOvA	joint	fit	we	do:	
(Δm2,	θ23,	θ13,	δ,	systematic	errors)	→	(θ23,	δ)

• Two	different	approaches:
– Profiling
– Marginalizing
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• Profiling
– Take	the	best	fit	in	all	parameters	you	are	not	showing	at	each	
point you	do	show.

– More	common,	works	under	certain	assumptions.
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• Marginalizing
– Integrate	up	all	the	values	you	are	not	showing.
– Shows	up	more	in	Bayesian	analyses.
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Frequentist

• Apply	solid	mathematical	rigor	to	answer	a	question	that	
nobody	cares	about.
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• Answers	the	question	everyone	is	really	interested	in	
using	assumptions	no	one	believes.

Bayesian



Frequentist
• The	true	value	of	a	measurement	is	an	unknown	constant.

• Report	the	probability	of	experimental	outcomes,	given	a	
value	of	that	constant.

• Use	that	to	construct	a	confidence	interval	which	will	contain	
the	true	value	in	α fraction	of	experiments.

61

• The	true	value	of	a	measurement	is	a	random	variable.

• Before the	measurement,	have	a	“prior”	PDF	of	that	variable.

• After	the	measurement,	update	to	a	“posterior”	PDF	using	
the	data	collected.

Bayesian



Frequentist
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Bayesian



• In	the	real	world:	
– This	is	from	the	latest	T2K	PRD,	arXiv:1707.01048
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• What	if	you	can’t	trust	the	values	from	the	PDG?
– They	don’t	have	the	right	coverage:	
a	90%	C.L.	is	actually	an	85%	C.L.

• Commonly	happens	when	statistics	are	low	and	the	
problem	has	a	physical	boundary.
– Happens	a	lot	in	neutrino	physics	since	0	<	sin22θ<	1
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Feldman-Cousins

• The	solution	is	a	technique	called	Feldman-Cousins

• From	a	paper	called	“A	Unified	Approach	to	the	Classical	
Statistical	Analysis	of	Small	Signals”	
– by	Gary	Feldman	and	Bob	Cousins
– Phys.	Rev.	D57	(1998)	3873

• Let’s	walk	through	an	example.
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• A	real-life	example	from	the	MINOS	anti-νμ disappearance	
analysis	circa	2010.
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Up-values	below	nominal	close	
to	a	physical	boundary…
Contours	are	tighter	since	we	
have	extra	information.

Up-values	above	nominal	when	
there	is	a	degeneracy…
Contours	are	looser	since	the	
information	is	more	ambiguous.



Conclusion
• I’ve	tried	to	show	the	statistical	underpinnings	of	some	of	the	
most	common	statistical	techniques	we	use.
– But	there	are	many,	many	more	possible	techniques.
– There	are	numerous	alternative	ways	to	do	everything	I	have	
presented	here.

• Some	general	advice:	use	the	simplest	method	that	is	
correct,	but	no	simpler.
– If	you	use	a	technique	that	requires	assumptions	that	you	cannot	
meet,	your	results	will	be	questioned.

– But,	if	you	use	a	more	complicated	technique,	be	prepared	to	
explain	how	it	works	and	why	you	chose	it.

• I	highly	recommend	the	PDG	statistics	section	as	a	place	to	
find	statistical	techniques	which	are	“commonly	accepted”	in	
physics.
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Backups
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• We	know,	from	the	central	limit	theorem,	that	means	are	
normally	distributed.	
– The	difference	between	means	is,	too.
– The	standard	deviation	of	that	difference	is:

• Now	the	question	is:	Is	0.6	significantly	different	from	0	if	
it	comes	from	a	normal	distribution	with	σ =	0.32?
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µ1 = 2.5± 0.1 µ2 = 3.1± 0.3

�µ2�µ1 =
q
�2
µ2

+ �2
µ1

= 0.32

X = µ2 � µ1 = 0.6



• What	we	are	asking	is:	how	likely is	it	that	we	would	get	
our	result,	or	something	more	extreme	assuming	the	
null	hypothesis	is	true?
– This	is	the	definition	of		p-value,	which	we	compare	to	our	α.

• “different	from”	means	we	are	making	a	“two-sided”	test:
– If	we	set	an	α =	0.05,	we	want	to	know	if	our	value	falls	into	
the	central	1-α or	95%	of	the	distribution.
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• To	start,	we	calculate	a	“Z-score,”	which	effectively	
converts	from	our	specific	normal	distribution	to	the	
canonical	N(0,1):
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This	is	what	we	
mean	when	we	
say	“1.88	σ”

Z =
X � µ0

�
=

0.6� 0

0.32
= 1.88



• But,	what	does	that	Z-score	mean?
– In	other	words,	what	is	it’s	p-value	we	can	compare	to	α?
– What	fraction	of	values	in	the	distribution	are	more	extreme
than	ours?

• But	infinity	is	hard,	so	we	can	take	advantage	of	the	fact	
that	probabilities	all	add	up	to	1	to	do	the	inverse:
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p = 1�
Z Z

�Z
N (x, 1)dx

p =

Z �Z

�1
N (x, 1)dx+

Z 1

Z
N (x, 1)dx



• This	integral	doesn’t	have	an	analytical	solution,	but	we	
need	it	all	the	time,	so	it’s	results	are	readily	available	as	
the	“error	function”
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// Z-score (sigmas) -> p-value
root [4] 1 - TMath::Erf(1.88 / TMath::Sqrt(2))
(Double_t) 0.0601081

p = 1�
Z Z

�Z
N (x, 1)dx



• With	p =	0.06,	we	have	failed	to	reject	the	null	hypothesis	
at	α =	0.05.

• “These	two	means	are	consistent	at	the	95%	level.”
• Or,	we	might	say:

– “These	means	differ	by	1.88σ”	or	
– “They	are	consistent	at	the	94%	level”
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µ1 = 2.5± 0.1 µ2 = 3.1± 0.3



• Now,	we	need	to	choose	a	test	statistic.
– There	are	several	choices	for	this	problem.
– Which	one	is	the	right	one	depends	on	the	circumstance.

• A	good	first	guess:	try	a	chisquare (χ2) test.	
– This	is	what	the	test	statistic	looks	like:

– Squared	difference	between	the	histograms,	normalized	by	
the	expected	uncertainty.
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T =
NX (Oi � Ei)2

�2



• Why	this	test	statistic?	
– Let’s	see	how	it	behaves	assuming	H0.
– The	data	is	drawn	randomly	from	the	model,	so	each	bin,	Oi,	
should	be	drawn	randomly	from	the	model:

• Given	that,	the	argument	in	the	sum	of	the	chisquare
should	look	familiar	– it	is	a	Z-score,	squared.
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Oi s N (Ei,�)

Z =
X � µ0

�
T =

NX (Oi � Ei)2

�2


