

Proton Decay at DUNE FD $p \rightarrow K + \nabla$

Aaron Higuera University of Houston

Simulation of proton decay at DUNE LArTPC

p→ K+ ∇ We would focus only on K → μ^+ + v_μ events and atmospheric neutrino events as background

* GENIE 2.12.2

- Nuclear mode
- RFG with short range nucleon-nucleon correlations
- No binding energy
- No de-excitation photon production for Ar, only for Oxygen (Cherenkov detectors)

* Kaon-nucleus & GENIE FSI

SI are simulated using "hA" model

- No absorption
- Elastic and Inelastic scattering
- 🔲 K+ via π is not included
- 🖸 No K+ charge exchange
- GENIE FSI model never adds or removes 2
 - K+ from the final state

 $p \rightarrow K^+ \nabla$ We would focus only on $K \rightarrow \mu^+ + v_\mu$ events

Track Reconstruction

All of this makes Kaon track reconstruction a big challenge

- A MIP looses ~2.1 MeV/cm
- Kaon are heavy ionization particles
- ✤ 4 MeV Kaon will travel ~2 cm 2-3 wires
- Kaons below 25 MeV of KE are stubs hard to track them
- FSI modifies the KE spectrum

FSI plays a role in tracking efficiency

Track Reconstruction

Analysis

Far Detector Task Force Report

Requirement	$p \rightarrow \bar{\nu} K^+_{\mu 2}$ signal efficiency	Atmospheric v background rate
	(%)	$(Mton^{-1} \cdot year^{-1})$
None	100.0	2.9×10^{5}
Kaon tracking efficiency	61.8	N/A
Kaon and muon ID	38.0	9.2×10^{3}
Not shower-like	30.7	1.0×10^{3}
Vertex-muon separation	23.2	1.2×10^{2}

Far from what we promised in CDR

- To improve reconstruction
- To improve analysis

Only on $K \rightarrow \mu^+ + v_\mu$ events

After using CNN

Only on $K \rightarrow \mu^+ + v_\mu$ events

$$p_{\mu} = rac{m_k^2 - m_{\mu}^2}{2m_k}$$
 = 239 MeV

After using CNN

TMVA Toolkit for Multivariate Data Analysis

Machine learning (supervised training)

Boosted Decision Tree (BDT)

the boosting (forest)

 $O(x) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{t} \Omega(f_t)$

Signal: $K \rightarrow \mu^+ + v_\mu$ events Background: Atmospheric events

- Number of dcy vtx
- golden event
- Track-like hits
- EM-like hits
- Number of showers
- Total shower energy
- N tracks/trk-like hits
- N showers/em-like hits
- •N trks N vtx

Signal: $K \rightarrow \mu^+ + v_\mu$ events Background: Atmospheric events

- Number of tracksPIDA
- Track length
- P by range

Boosted Decision Tree (BDT)

TMVA overtraining check for classifier: BDT

Cut efficiencies and optimal cut value

Boosted Decision Tree (BDT)

Signal	Background Mton ⁻¹ year ⁻¹
100%	2.9 x 10 ⁵
60%	1421
50%	783
30%	232
20%	95

Requirement	$p \rightarrow \bar{\nu} K^+_{\mu 2}$ signal efficiency	Atmospheric v background rate
	(%)	$(Mton^{-1} \cdot year^{-1})$
None	100.0	2.9×10^{5}
Kaon tracking efficiency	61.8	N/A
Kaon and muon ID	38.0	9.2×10^{3}
Not shower-like	30.7	1.0×10^{3}
Vertex-muon separation	23.2	1.2×10^{2}

Far Detector Task Force Report

Boosted Decision Tree (BDT)

Signal	Background Mton ⁻¹ year ⁻¹
100%	2.9 x 10 ⁵
50%	783
20%	95

Background events are v_{μ} CCQE

Photon Detector System & Proton Decay

- Since the propagation of photons is much faster than the drifting of ions along the electric field light provides a references for a T0
- A PDS provides also a trigger system for non-beam events
- For a proton decay, k⁺—>µ⁺—>e⁺ a perfect PDS would have 3 "flashes" i.e. one per each decay

Photon Detector System & Proton Decay

- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- Look at OpHit to see if we can optimize OpFlash reco for proton decay events

 The PDS cannot discriminate decays (due to timing resolution and mechanism of scintillation in LAr)

Photon Detector System & Proton Decay

- Optical flashes (OpFlashes) are a collection of optical hits (OpHits)
- Look at OpHit to see if we can optimize OpFlash reco for proton decay events
- Select the most intense
 OpFlash and require that
 OpFlash yz center overlap with
 the yz muon-like track vertex
- If we assume that additional radiological background is one order of magnitude below the intrinsic ³⁹Ar background at any place in the active volume of the TPC
- Then, from this preliminary studies it seems that we can handle ³⁹Ar background and we are cover from additional radiological background (i.e. we can search for NDK)

Comments

- We have done significant progress
- More improvements to the reconstructions are needed
 - Track reconstruction (try 2nd gen of trajcluster)
 - Decay vertex ID, improve model
 - Shower reco & shower energy (current alg doesn't handle pretty well low energy shower)
- How far we want to go before TDR?
- Systematics? GENIE FSI
- Cosmogenic background?

The End

Workflow to Generate your CNN model

- 1) Generate your sample background and signal
- 2) Dump the ADC info for further processing and training Output- This would produce adc map synced with pdg map
- 3) Prepare data input: patch ~20x20cm of deconvoluted ADC output: vector of 3 values: [had_int decay pi0decay(gammaConv)]
- 4) Training your model GPU machine, thanks to Center for Advance Computing & Data Systems UH
- 5) Dump Keras model into a pure C++ model
- 6) Run ParticleDecayId_module.cc Uses hits and spacepoints from track with CNN info to produces vertices

K+ and LAr

Kaon-nucleus *

D. Stefan, Artur M. Ankowski Acta Physica Polonica B Vol. 40 (2009)

0.8