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ﬁf Where to start”/

You don’t need a formal education in ML to use its tools. But it
doesn'’t hurt to work through a online textbook or course. Here are
a few | think would be fun & usetul:

 The Coursera ML Course a very
approachable introduction to ML, walks you
through implementing core tools like
backpropagation yourself

o CS5231n: Convolutional Neural Networks tor
Visual Recognition another stanford course
focused on NNs for “images”, a great place
to start picking up practical wisdom for our
main use case

e Deep Learning With Python a book from the
creator of keras, a great choice if you're
planning to primarily work in python



https://www.coursera.org/learn/machine-learning
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://www.manning.com/books/deep-learning-with-python

ﬁWhere do | get my news?

Twitter, slack, and podcasts are the only Q oo < -
way lI've found to navigate the vast amount s e o e
of ML literature out there.

@NatureNews

Quantum machine goes in search of the Higgs boson
D-Wave system shows quantum computers can learn to detect
particle signatures in mountains of data, but doesn’t outpace
conventional methods — yet.
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ﬁfWhere do | get my news?

Specifically | would recommend:

e Joining the fermilalb machine learning slack
e Listening to Talking Machines podcast

e Following some great people on twitter:

Hardmaru @hardmaru, google brain resident, active & amusing
with a focus on generative network work

Francois Chollet @fchollet, google based keras author,
sometimes has interesting original work

Andre] Karpathy @karpathy, tesla director of al, co-founder of
first DL course at stanford

Kyle Cranmer @KyleCranmer, ATLAS NYU protessor, helping
ead the charge on DL in the collider would with lots of excellent
short author papers

Gilles Loupe @glouppe, ML Associate Protessor at the

Université de Liege, a visiting scientist at CERN and often co-
author with Kyle 6



https://hepmachinelearning.slack.com/
http://www.thetalkingmachines.com/
https://twitter.com/hardmaru
https://twitter.com/fchollet
https://twitter.com/karpathy
https://twitter.com/KyleCranmer
https://twitter.com/glouppe

ﬁf -un “Pnysics’ Paper

So what should you read from recent HEP ML work?

https://arxiv.org/abs/1402.4735 the Nature paper that showed in MC that DNNs
could be great for physics analysis

https://arxiv.org/abs/1604.01444 first CNN used for a physics result, should be
familiar!

Can we train with less bias?
https://arxiv.org/abs/1611.01046 uses an adversarial network
https://arxiv.org/pdf/1305.7248.pdf more directly tweaking loss functions

RNNSs for b-tagging and jet physics:

nttps://arxiv.org/pdf/1607.08633 first look at using RNNs with Jets
nttps://arxiv.org/abs/1702.00748 using recursive and recurrent neural nets for jet
physics

ATLAS Technote first public LHC note showing they are looking at really using
RNNs for b-tagging, CMS close behind

GANSs for fast MC:
https://arxiv.org/abs/1705.02355 PoC for EM showers in calorimeters



https://arxiv.org/abs/1402.4735
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1611.01046
https://arxiv.org/pdf/1305.7248.pdf
https://arxiv.org/pdf/1607.08633
https://arxiv.org/abs/1702.00748
https://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf
https://arxiv.org/abs/1705.02355

CNN Papers

Our CNN for ID network is still very much inspired by the first
googlenet:

https://arxiv.org/pdf/1409.4842v1 .pdf

which introduces a specific network in network structure called an
inception module which we've found to be very powertul.

Filter
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https://arxiv.org/pdf/1409.4842v1.pdf

ﬁf CNN Papers

Related to that paper are a number of papers charting the rise of the
‘network in network model”, and advances in the googlenet that we've
started to explore:

https://arxiv.org/abs/1312.4400 introduces the idea of networks in
networks

http://arxiv.org/abs/1502.03167 introduces batch normalization which
speeds training

http://arxiv.org/pdf/1512.00567.pdf smarter kernel sizes for GPU
efficiency

http://arxiv.org/abs/1602.07261 introducing residual layers which
enables even deeper networks

11


http://arxiv.org/abs/1502.03167
http://arxiv.org/pdf/1512.00567.pdf
http://arxiv.org/abs/1602.07261

ﬁf CNN Papers

We've also started to play with alternatives to inception modules

iInspired by some recent interesting models:

e https://arxiv.org/abs/1608.06993 the densenet which takes the idea

of residual connections to an extreme conclusion

e https://arxiv.org/pdf/1610.02357.pdf replacing regular convolutions
with depthwise separable ones under the hypothesis that 1x1
convolutional operations power the success of the inception module

12


https://arxiv.org/abs/1608.06993
https://arxiv.org/pdf/1610.02357.pdf

ﬁf CNN Papers

Or changing core components like the way we input an image or the

activation functions we use

» https://arxiv.org/pdf/1706.02515.pdf an activation seems to work

oetter than batch normalization for regularizing weights

o https://arxiv.org/abs/1406.4729 can we move to flexible sized inputs
images”?
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https://arxiv.org/pdf/1706.02515.pdf
https://arxiv.org/abs/1406.4729

ﬁf\mage Segmentation Papers

Can we break our events down to components and ID them?
nttps://arxiv.org/pdf/1411.4038 first of a wave of cnn powered pixel-

oy-pixel IDS
nttps://arxiv.org/abs/1505.04597 an example of where the task has

peen reinterpreted as an encoder/decoder task, with some insight

from residual connection work, has worked very well for uboone

nttps://arxiv.org/pdf/1611.07709.pdf part of work to ID objects in an

image rather than individual pixels
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