
Navigating and
Editing Prototxts

Alexander Radovic
College of William and Mary

Alexander Radovic Editing Prototxts 1

What are prototxts?
A file format a little like an xml file:
https://developers.google.com/protocol-buffers/docs/overview

Caffe uses them to define the network architecture, and your
training strategy.

Individual pieces are quite simple, but can become unwieldy/
daunting when you have a large or complex network.

Finding good examples and checking draft networks with
visualization tools (http://ethereon.github.io/netscope/#/editor) is
the best way not to get stuck.

We’ll connect a few example snippets to concepts you saw earlier
here. then we’ll walk through editing some prototxts together. 2

https://developers.google.com/protocol-buffers/docs/overview
http://ethereon.github.io/netscope/#/editor

Neural Networks

Alexander Radovic Deep Learning at NOvA

y

3

Neural Networks

Alexander Radovic Deep Learning at NOvA

x = input vector

y

y = � (Wx+ b)

� =

4

Training A Neural Network
L(

W
,x

)

W

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

5

Training A Neural Network

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

Add in a regularization term to avoid overfitting:
L0 = L+

1

2

X

j

w2
j

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

6

Training A Neural Network

L(W,X) =

1

N

N
examplesX

1

�yi log (f(xi))� (1� yi) log (1� f(xi))

Add in a regularization term to avoid overfitting:
L0 = L+

1

2

X

j

w2
j

Update weights using gradient descent:

Propagate the gradient of the network back to specific nodes
using back propagation. AKA apply the chain rule:

w
0

j = wj � ↵rwjL

rwjL =
�L

�f

�f

�gn

�gn
�gn�1

...
�gk+1

�gk

�gk
�wj

Start with a “Loss” function which characterizes the
performance of the network. For supervised learning:

7

Deep Neural Networks
What if we try to keep all the input data? Why not rely on a
wide, extremely Deep Neural Network (DNN) to learn the
features it needs? Sufficiently deep networks make excellent
function approximators:

http://cs231n.github.io/neural-networks-1/

However, until recently they proved almost impossible to train.
8

http://cs231n.github.io/neural-networks-1/

Smarter Training
Another is stochastic gradient
descent (SGD). In SGD we
avoid some of the cost of
gradient descent by
evaluating as few as one
event at a time. The
performance of conventional
gradient descent is
approximated as the various
noisy sub estimates even out,
with the stochastic behavior
even allowing for jumping out
of local minima.

http://hduongtrong.github.io/

9

http://hduongtrong.github.io/

“Solver Prototxt”
Here you will define the basics of how you want the training to
run. For example how often to run tests on the network, or how
many events to evaluate in a given test phase.

10

http://hduongtrong.github.io/

“Solver Prototxt”
You’ll also set hyper parameters here, choosing your favorite
variation on SGD and related terms like learning rate or
momentum.

http://hduongtrong.github.io/

http://hduongtrong.github.io/

Better Activation Functions
But there were also some major technical breakthroughs. One
being more effective back propagation due to better weight
initialization and saturation functions:

The problem with sigmoids: ReLU:

http://deepdish.io/

�� (x)

�x

= � (x) (1� � (x))

Sigmoid gradient goes to 0 when x is far from 1. Makes back
propagation impossible! Use ReLU to avoid saturation.

ReLU (x)

�x

=

(
1 when x > 0

0 otherwise

12

http://deepdish.io/

Dropout
• Same goal as conventional regularization- prevent

overtraining.
• Works by randomly removing whole nodes during training

iterations. At each iteration, randomly set XX% of weights to
zero and scale the rest up by 1/(1 – 0.XX).

• Forces the
network not
to build
complex
interdepende
ncies in the
extracted
features.

Convolutional Neural Networks

http://setosa.io/ev/image-kernels/

Input Feature Map
Kernel

Instead of training a weight for every input pixel, try learning
weights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.
Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

14

http://setosa.io/ev/image-kernels/

Convolutional Neural Networks

Feature Map

https://developer.nvidia.com/deep-learning-courses

Instead of training a weight for every input pixel, try learning
weights that describe kernel operations, convolving that kernel
across the entire image to exaggerate useful features.
Inspired by research showing that cells in the visual cortex are
only responsive to small portions of the visual field.

15

https://developer.nvidia.com/deep-learning-courses

Convolutional Layers
• Every trained kernel operation is the same across an entire

input image or feature map.
• Each convolutional layer trains an array of kernels to

produce output feature maps.
• Weights for a given

convolutional layer are
a 4D tensor of
NxMxHxW (number of
incoming features,
number of outgoing
features, height, and
width)

16

Pooling Layers
• Intelligent downscaling of input feature maps.
• Stride across images taking either the maximum or average

value in a patch.
• Same number of feature maps, with each individual feature

map shrunk by an amount dependent on the stride of the
pooling layers.

Superhuman Performance

Alexander Radovic Deep Learning at NOvA

Some examples from one of the early breakout CNNs.
Googles latest “Inception-v4” net achieves 3.46% top 5 error
rate on the image net dataset. Human performance is at ~5%.

“Train/Test Prototxt”
This is where you’ll define your architecture, and your input
datasets.

“Train/Test Prototxt”
The architecture itself is in a series of layers. You’ll need to
describe those layers, and make sure they fit into the wider
ensemble correctly. Some layers like this one defining a set of
convolutional operations take a previous layers as input and
output a new one.

“Train/Test Prototxt”
Others modify a layer, defining for example which activation
function to use.

“Train/Test Prototxt”
At the end of your network architecture you’ll
need to pick a loss calculation and other
metrics to output in test phases, like the top-1 or
top-n accuracy.

The LeNet
Now let’s take a look at the LeNet. A convolutional neural
network in perhaps its simplest form, a series of
convolutional, max pooling, and MLP layers:

The “LeNet” circa 1989

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/

Some Toy Examples
In this directory (on the Wilson Cluster):

/home/radovic/exampleNetwork/forAris/tutorial/

You’ll find an LeNet implementation designed for use on handwritten
characters, an example network that comes with caffe
(lenet_train_test.txt).

You’ll also see an example of how that network has been edited to work
with NOvA inputs (lenet_nova.txt), and some examples of how you might
edit that (lenet_nova_extralayer.txt,lenet_solver_nova_branched.prototxt)
to explore perturbations on that central design.

They come with solver files with commented out alternative solvers,
please feel free to try them out! Also remember to try visualizing them
using http://ethereon.github.io/netscope/#/editor.

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/

http://ethereon.github.io/netscope/#/editor

