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What are prototxts?
A file format a little like an xml file: 
https://developers.google.com/protocol-buffers/docs/overview 

Caffe uses them to define the network architecture, and your 
training strategy.  

Individual pieces are quite simple, but can become unwieldy/
daunting when you have a large or complex network.  

Finding good examples and checking draft networks with 
visualization tools (http://ethereon.github.io/netscope/#/editor) is 
the best way not to get stuck. 

We’ll connect a few example snippets to concepts you saw earlier 
here. then we’ll walk through editing some prototxts together. 2

https://developers.google.com/protocol-buffers/docs/overview
http://ethereon.github.io/netscope/#/editor


Neural Networks
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Neural Networks
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Training A Neural Network
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Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:
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Training A Neural Network
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Add in a regularization term to avoid overfitting:
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Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:
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Training A Neural Network
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Update weights using gradient descent:

Propagate the gradient of the network back to specific nodes 
using back propagation. AKA apply the chain rule:
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Start with a “Loss” function which characterizes the 
performance of the network. For supervised learning:
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Deep Neural Networks
What if we try to keep all the input data? Why not rely on a 
wide, extremely Deep Neural Network (DNN) to learn the 
features it needs? Sufficiently deep networks make excellent  
function approximators: 

http://cs231n.github.io/neural-networks-1/

However, until recently they proved almost impossible to train. 
8
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Smarter Training
Another is stochastic gradient 
descent (SGD). In SGD we 
avoid some of the cost of 
gradient descent by 
evaluating as few as one 
event at a time. The 
performance of conventional 
gradient descent is 
approximated as the various 
noisy sub estimates even out, 
with the stochastic behavior 
even allowing for jumping out 
of local minima. 

http://hduongtrong.github.io/
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“Solver Prototxt”
Here you will define the basics of how you want the training to 
run. For example how often to run tests on the network, or how 
many events to evaluate in a given test phase.
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“Solver Prototxt”
You’ll also set hyper parameters here, choosing your favorite 
variation on SGD and related terms like learning rate or 
momentum.

http://hduongtrong.github.io/

http://hduongtrong.github.io/


Better Activation Functions
But there were also some major technical breakthroughs. One 
being more effective back propagation due to better weight 
initialization and saturation functions:

The problem with sigmoids: ReLU: 

http://deepdish.io/

�� (x)

�x

= � (x) (1� � (x))

Sigmoid gradient goes to 0 when x is far from 1. Makes back 
propagation impossible! Use ReLU to avoid saturation. 

ReLU (x)

�x

=

(
1 when x > 0

0 otherwise
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Dropout
• Same goal as conventional regularization- prevent 

overtraining. 
• Works by randomly removing whole nodes during training 

iterations. At each iteration, randomly set XX% of weights to 
zero and scale the rest up by 1/(1 – 0.XX). 

• Forces the 
network not 
to build 
complex 
interdepende
ncies in the 
extracted 
features.



Convolutional Neural Networks

http://setosa.io/ev/image-kernels/

Input Feature Map
Kernel

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 
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Convolutional Neural Networks

Feature Map

https://developer.nvidia.com/deep-learning-courses

Instead of training a weight for every input pixel, try learning 
weights that describe kernel operations, convolving that kernel 
across the entire image to exaggerate useful features.   
Inspired by research showing that cells in the visual cortex are 
only responsive to small portions of the visual field. 
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Convolutional Layers
• Every trained kernel operation is the same across an entire 

input image or feature map. 
• Each convolutional layer trains an array of kernels to 

produce output feature maps.
• Weights for a given 

convolutional layer are 
a 4D tensor of 
NxMxHxW (number of 
incoming features, 
number of outgoing 
features, height, and 
width)
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Pooling Layers
• Intelligent downscaling of input feature maps. 
• Stride across images taking either the maximum or average 

value in a patch. 
• Same number of feature maps, with each individual feature 

map shrunk by an amount dependent on the stride of the 
pooling layers.



Superhuman Performance
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Some examples from one of the early breakout CNNs.
Googles latest “Inception-v4” net achieves 3.46% top 5 error  
rate on the image net dataset. Human performance is at ~5%.



“Train/Test Prototxt”
This is where you’ll define your architecture, and your input 
datasets.



“Train/Test Prototxt”
The architecture itself is in a series of layers. You’ll need to 
describe those layers, and make sure they fit into the wider 
ensemble correctly. Some layers like this one defining a set of 
convolutional operations take a previous layers as input and 
output a new one.



“Train/Test Prototxt”
Others modify a layer, defining for example which activation 
function to use.



“Train/Test Prototxt”
At the end of your network architecture you’ll 
need to pick a loss calculation and other 
metrics to output in test phases, like the top-1 or 
top-n accuracy.



The LeNet
Now let’s take a look at the LeNet. A convolutional neural 
network in perhaps its simplest form, a series of 
convolutional, max pooling, and MLP layers:

The “LeNet” circa 1989

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/



Some Toy Examples
In this directory (on the Wilson Cluster): 

/home/radovic/exampleNetwork/forAris/tutorial/ 

You’ll find an LeNet implementation designed for use on handwritten 
characters, an example network that comes with caffe 
(lenet_train_test.txt). 

You’ll also see an example of how that network has been edited to work 
with NOvA inputs (lenet_nova.txt), and some examples of how you might 
edit that (lenet_nova_extralayer.txt,lenet_solver_nova_branched.prototxt) 
to explore perturbations on that central design. 

They come with solver files with commented out alternative solvers, 
please feel free to try them out! Also remember to try visualizing them 
using http://ethereon.github.io/netscope/#/editor.

http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/

http://ethereon.github.io/netscope/#/editor

