Calibration Kick-off

Sowjanya, Kendall

DUNE Physics week November 15 - 17, 2017 Fermilab

DUNE FD/SP Calibrations

Stringent physics requirements

- CDR: Uncertainty of 2% on energy scale is already important to physics goals; calibration must be <2%
- 1% Lepton energy bias is already important to physics goals; calibration must be <1%
-and calibrations are not the only source of uncertainty!

Tough path ahead:

- Need to define calibration driven physics requirements (currently no detailed ties exist) and understand impact on LBL; Need Sim/reco tools
- Need a calibration strategy for TDR timeline (clarify assumptions; present arguments/studies to meet precision goals)

The Calibration Challenge We will never get tired of saying this :)

TPC response model Argon ionization energy Electron drift velocity t_0 offsets Electron lifetime **Recombination parameters** Electric field Longitudinal and transverse electron diffusion Wire positions/geometry Wire field response Channel gain Overall electronics analog transfer function Electronic crosstalk Electronics noise, including correlated noise ADC linearity (differential and integral).

Photon detector response model: <similar list here>

(See Backup for more)

High level quantities Position reconstruction biases Direction reconstruction biases Energy scale Energy resolution Particle ID efficiencies Noise removal efficiencies

Particle response Charged hadron propagation Neutron response

- Is this list complete?
- Position/time dependance?
- Needed precision?

. . .

• How to constrain? How much can you relay on external measurements?

DUNE SP/DP Calibration Task Force

- Formed at the last Collaboration meeting
- Mailing list: "DUNE-CALIBRATION-TF" subscribe if you haven't already
- Indico meeting list: <u>https://indico.fnal.gov/category/703/</u>
- Weekly meetings, alternating times
 - Thursdays, 2 pm Central
 - Tuesdays, 8 am Central
- A lot of productive discussions on a range of calibration topics, if you are a calibration enthusiast, we want you there!

DUNE FD/SP Calibrations

Stringent physics requirements

- CDR: Uncertainty of 2% on energy scale is already important to physics goals; calibration must be <2%
- 1% Lepton energy bias is already important to physics goals; calibration must be <1%

Tough path ahead:

Task Force Goals — long term

- Need to define calibration driven physics requirements (currently no detailed ties exist) and understand impact on LBL; Need Sim/reco tools — *kick off discussion Thursday*
- Need a calibration strategy for TDR timeline (clarify assumptions; present arguments/studies to meet precision goals) — *kick off discussion Thursday*

Calibration Feedthroughs

- For the last couple of months, the TF was focused on defining Calibration Feed Through requirements for DUNE SP
 - Laser
 - Radioactive sources
 - Photon System

See our Indico page for detailed talks on all these topics

- Field Response Calibration ...
- While we will continue to perform FT driven studies, the initial (intense) phase is coming to a wrap-up (phew!)
 - Our focus now is towards defining a calibration strategy and launching studies as needed

Lessons learned

- Focus topic for TF for the next few weeks: Launch a series of "lessons learned" talks from other experiments (plus possible studies and information to be gathered from on-going and future experiments)
 - MicroBooNE, 35-ton
 - ProtoDUNE SP/DP
 - T2K, ICARUS, LArIAT...
- Given that DUNE is a unique challenge (size, location and precision-wise), direct extrapolation from external data is questionable for all calibration needs, nevertheless there will be wealth of information to be learnt especially ProtoDUNE (minus the space charge)
 - E.g. what possible studies can be planned in ProtoDUNE that can feed into DUNE?
 - Closely collaborate with ProtoDUNE DRA group to pipeline information — will start discussions at the physics week

- Calibration with Cosmics
 - Alignment (local vs global), Stability monitoring, diagnosing failures (e.g. HV), electron lifetime, recombination, diffusion etc.
 - Rate of cosmics is very low, need to understand what is achievable.
 - The laser context (as an independent calibration probe)?
 - Reach with cosmics vs laser?
- Radioactive source calibration
 - Calibration needs for position and energy resolution?
 - How to disentangle various effects in visible energy spectrum?

- Does DUNE need a Cosmic Ray Tagger?
 - gives reconstruction efficiency with CRT, independent from TPC
 - More useful for Dirt or cosmic muons?
 - What is the most optimal location for the CRT?
- T0-tagging
 - PDS to TPC Calibration? (Is low cosmic rate an issue to do this on a short time scale?)
 - Is light from Ar-39 an issue? probably not but need simulations to show this.
 - Can CRT help here?
- What can be done with dirt muons?

- How does fluid flow impact Space charge contributions from Cosmics & other Ionization sources (e.g. Ar-39 and Ar-42)?
 - SP vs DP?
 - More complications for DP given the gas phase?
- Drift field deformations from CPA/FC deformations? FC resistor failures?
 - SP vs DP?
 - Can various effects add up to produce a worst case scenario?
 - E.g. Can steady state fluid flow + FC resistor failure impact space charge significantly?
 - Need to simulate worse case possible scenarios

- How does fluid flow impact Space charge contributions from Cosmics & other Ionization sources (e.g. Ar-39 and Ar-42)?
 - SP vs DP?
 - Mc Achieving a list of studies to be done (or questions to be answered) for a given topic in itself is a significant
 Drift To-Do item.
 - failur

• SF

We encourage you to contribute to such a list. (Just shoot an email to Sowjanya/Kendall)

- Can vanous chects and up to produce a worst case sechano:
- E.g. Can steady state fluid flow + FC resistor failure impact space charge significantly?
- Need to simulate worse case possible scenarios

Also Discussions planned

- Agenda: <u>https://indico.fnal.gov/event/15181/other-view?</u>
 <u>view=standard</u>
- Thursday, 9 to 11 am: Calibration Joint session with FD Sim/Reco
- Thursday, 11 am to 1 pm: TDR organization/plans and Discussion
- Thursday, 2 to 4:30 pm: Calibration Joint session with LBL (regular Task Force meeting slot)
- Friday, 1 to 3 pm: Calibration Close-out talks & workshop summary/discussion
- All other times: working group time we want to get some work done along with important discussions!

This session

- Calibration with Cosmics kick-off (lead: Tom)
 - Focus: Alignment studies (Cosmics vs Laser?)
- Calibration for low energy events kick-off (lead: Juergen)
 - Focus: Energy and position resolution studies
- Working group time planned for both topics
- For other topics, we will form working groups as needed

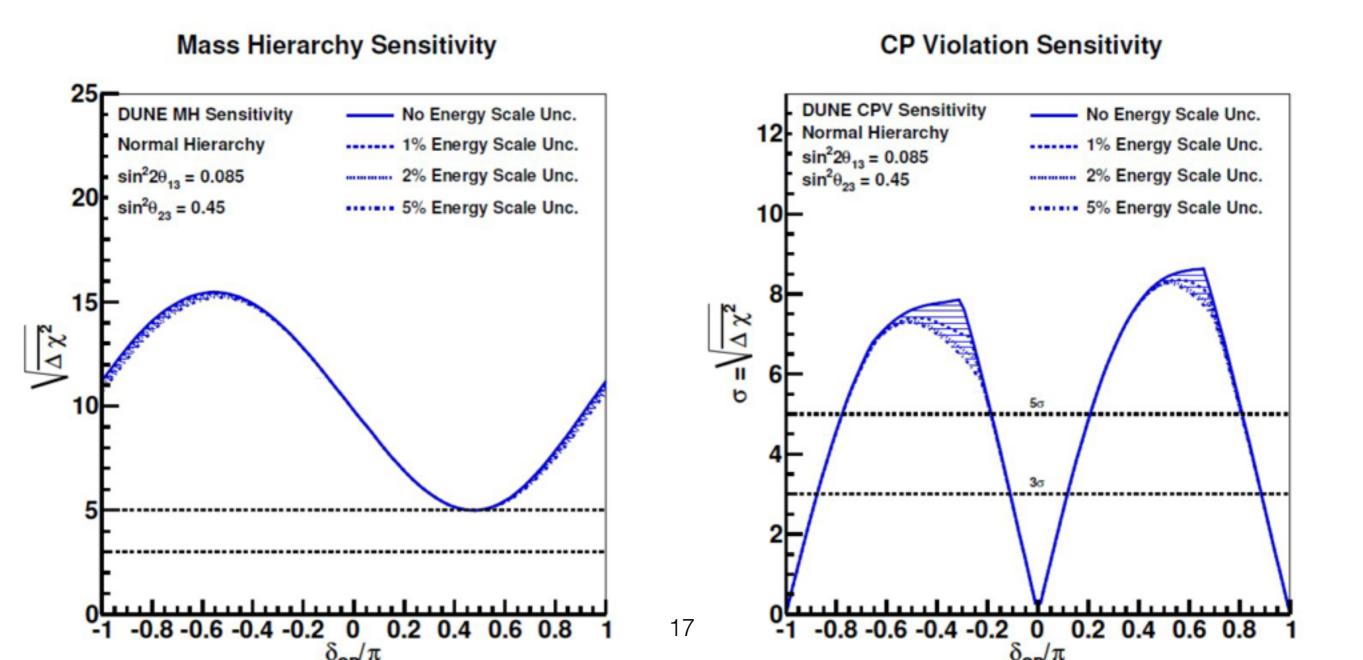
This session

• Calibration with Cosmics kick-off (lead: Tom)

 If you are new to DUNE or to DUNE Calibrations and not sure where to get started or how to contribute, please contact **Sowjanya (and Kendall)** and we will direct you to the relevant WG or contact point.

Your help is very much welcome!

• For other topics, we will form working groups as needed


Working group & Discussion space

- Working groups and informal discussions will happen in Atrium (let's hijack a table and label it "Calibration")
- The small dining room space (next to the wending machines in Atrium) is also available for discussions and interaction.
- Let's get started!

Backup


Issue: Unprecedented Physics Requirements of DUNE

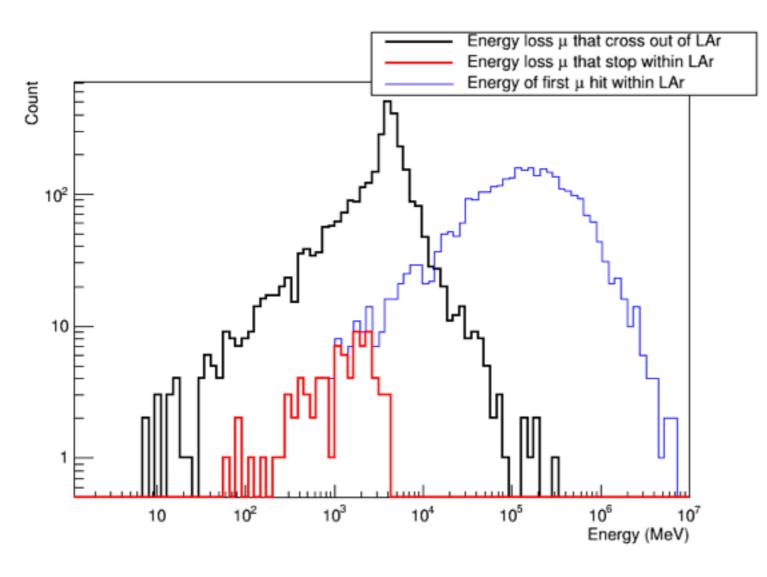
CDR: Uncertainty of 2% on energy scale is already important to physics goals; calibration must be <2%

Issue: Unprecedented Physics Requirements of DUNE

1% Lepton energy bias is already important to physics goals; calibration must be <1%

Igor's Matrix Response Parameter Correlations

	Source value ->	Mechanic al accuracy	LAr purity (e lifetime)	Preamp gain	Coordina te	LAr temperat ure	dE/dx MIP	dQ/dx MIP	Momentu m by MCS	Drift velocity	Drift field	Recombi nation, MIP	LAr density	Space charge	dE/dx Laser	dQ/dx Laser	Laser	Laser track deviation
Affected value																		
Mechanic al accuracy		0.01			asured													
LAr purity (e lifetime)			0.10								Error	correll	ation (color d	coded)			
Preamp gain				0.02							/_	\leq						
Coordina te		1.00			0.03					1.00								
LAr temperat ure						0.01												
dE/dx MIP							0.01						1.00					
dQ/dx MIP			0.20	1.00	1.00		1.00	0.04			erived ive err							
Momentu m by MCS									0.00									
Drift velocity						2.98				0.03	0.50							
Drift field		1.00	-								0.01		Erro	r corre	allation	(color	codeo	d)
Recombi nation, MIP				Error (corrella	ation (d	color C	oded)			0.15	0.00						
LAr density						1.00							0.01					
Space charge								1.00						0.01				


But also: Noise model, FE response (beyond gain), induction wire resp.

Cosmics and other sources of muons

- Overall cosmic rate: 4000 per day per 10 kt module
 - <u>https://indico.fnal.gov/getFile.py/access?</u>
 <u>contribId=3&resId=0&materiaIId=slides&confId=14909</u> (Vitaly)
 - Stopping muons: 30/d/10kt, APA-CPA crossing tracks 200-500/d/10kt
 - Limited angular coverage: No muons at zenith angles >75 degrees
 - Roughly, each collection plane wire is hit only every 2-3 days at best (assuming 100% efficiency and no geometry considerations)
- Beam induced rock muons: 1 3/d/10kt
- Atmospheric neutrinos: ICARUS saw 0.33 v per day (476 ton active volume), implies 7/d/10kt for DUNE. Similar rate from atm nu - rock interactions.
 - typically lower energy, multiple Coulomb scattering effects dominate

Cosmics

https://indico.fnal.gov/conferenceDisplay.py?confld=14909 V. Kudryavtsev

- Stopping: 30 per day
- APA-CPA module crossing tracks: 200-500 per day
- No muons at zenith angles >75 degrees

Back of the envelope calculations showing collection wires are hit only 2-3 per day

- Assume 200 crossing tracks/d/10kt,
- Assume 1000 wires hit per cosmic.
- CDR: 384,000 wires/10kt cryostat => 380k/ 1000/200=2
- Roughly implies 2 days to hit all wires.

Back of the envelope calculations of extrapolation of atmospheric neutron rate from ICARUS to DUNE

Atmospheric neutrino rate, scale up from ICARUS:

ICARUS saw 1 neutrino per 3 days => 0.33333 nu per day ICARUS has 476 tons of active volume DUNE active volume for a 10kt detector is 10 kt which results in about 7 muons per day per 10 kt volume