Michel Electron Reconstruction

Aidan Reynolds 15th November 2017

Outline

- Introduction
 - Motivation and Goals
 - Michel electrons in LAr
- Monte Carlo Truth Study
 - Track-like energy deposition
 - Radiated energy deposits
- Reconstructing Michel electrons in ProtoDUNE-SP
 - Hit Tagging
 - Event Selection
 - Energy Reconstruction

Motivation and Goals

• In ProtoDUNE–SP Michel electrons provide a O(100) Hz source of tens of 0-50 MeV electrons with characteristic energy spectrum

Motivation

- Understand detector response to tens of MeV electrons
 - Improve ν energy reconstruction
 - Supernova Neutrinos

Goal

• Measure energy resolution and scale for tens of MeV electrons

A Michel electron is an electron produced when a muon decays at rest

 $\mu \rightarrow e + \nu_e + \nu_\mu$

Three body decay kinematics lead to a characteristic spectrum

• Steep cut-off at 53 MeV corresponding to $M_{\mu}/2$

Michel Electrons in LAr

In LAr the Michel electron spectrum is modified by radiative corrections

- Negative muons can be captured by the nucleus
- Electron couples to nucleus via a photon at decay

Michel spectrum changed

- Peak moves to lower energies
- Tail extends to M_{μ}

5/24

Energy Deposition in LAr: What Does a Michel look like?

Muon lifetime much shorter than readout window

- See muon track and Michel as one object
- Incoming muon stops with a Bragg peak
- Electron emitted isotropically

At O(10) MeV electron stopping power similar for radiation and collisions

• Critical value ~45, on top of peak in spectrum

Therefore Michel electrons have a unique topology

• Track + Shower

MC Truth Study

Stopping Muon Sample

- Study the ionisation energy deposition at a truth level to inform reconstruction
- Sample of individual particle gun muons
- + 40,000 μ^+ generated at 400MeV
- Retain shower daughters
 - Study details of the radiated energy

Michel tracks can be quite reliably recognised (e.g. MicroBooNE)

 Radiated energy is much harder, particularly in noisy environments

So a track only energy reconstruction would be simple...

...but the track only energy deposition has large stochastic variations

True michel energy vs ionisation energy from Michel only

Radiated Photons

- Multiple photons radiated for each Michel electron
- Stochastic nature of brem radiation increases with Michel energy
- Can carry a significant energy away from the initial track
- Need to associate deposits from brem photons with primary track

9/24

Geometry of Radiation

- Some radiation can travel a reasonable distance before converting into ionisation
- Absorption length $\sim 20 cm$
- Mostly confined within 30–60 degrees of Michel momentum
- Need to associate deposits to the initial track

Angle [rad 0.5 Distance [cm]

Secondary Ionisation Spatial Information

Ionisation Energy Deposition

Track Only

True michel energy vs ionisation energy from Michel only

Primary Electron Track Only

40 cm, 30 degrees

Ionisation within 40.000000cm of vertex and 0.500000Rad of Momentum

Ionisation within 40cm of Vertex and 30 Degrees of Michel Track

Reconstruction

Beam + Cosmics Sample

- Reconstruction tested on Beam + Cosmics samples from MCC9
- Cosmic MC provides a more realistic sample on which to test reconstruction
- O(10,000) Michel electrons in each sample

The plan is to aid reconstruction with hit tagging from a CNN

The CNN is trained on 48x48 images of the detector readout from each plane

The images provide context for the network to identify the central hit

- Target: classify what caused the central hit in the image
- EM, Track, None, Michel

Network Architecture

The network has a simple architecture with a single convolutional layer

- 1 convolutional layer
 - 48 5x5 filters
- 2 dense layers
- Two output layers: [em, trk, none], [michel]

Dropout between each layer to control overtraining

O(10,000,000) images used in training, generated from simulation

• Cosmics, Muon beam, Hadron beam

Michel Hit Tagging Performance

- Tested CNN's on a sample of beam + cosmic simulation and compared to previous network
 - Pion beam at 2.5GeV
- Hit tagging performance test: ROC curve
 - True positive vs false positive rates for Michel hits

Event selection: search for a cluster of Michel tagged hits near the end of a reconstructed track

In each plane

- Loop over hits and check
 - Michel output of CNN > CNN Thresh
 - Distance from track end < Radius Thresh
- Count these hits

Selection criteria

 Number tagged hits in each plane > Number Thresh

Event Selection Performance

- Event selection was tested on the reconstructed sample used for the hit tagging test
- Tested hyperparameters on 10% of data
- Best performance on full data
 - Purity: 98%
 - Efficiency: 3%

Based on the initial tagged hits

- Create track from initial Michel hits
- Produce a cone parallel to the initial Michel track
- Extend the cone to a collection radius \sim 50 cm
- Collect any Michel–like or EM–like hits within the cone
- Use these hits as input into energy reconstruction

Energy Reconstruction Ideas

Based on the initial tagged hits

- Create track from initial Michel hits
- Create a rectangle with the Michel electron track at the bottom left corner
- Produce a grayscale image based on all Michel–like or EM–like hits within the image
- Use these images as input into CNN which is trained to reconstruct Michel energy

- To get clean images for energy reconstruction need Michel electrons in empty region of the detector
- ... or need a way to get rid of unrelated hits
- Initial naive attempt seems to deal with tracks but not local EM activity, including that near tracks e.g. deltas

Challenges

EM Hits

Challenges

22/24

Challenges

23/24

Summary

- Michel electrons provide an abundant source of tens of MeV electrons
- Useful tool to study detector response to low energy electron events
 - Supernova neutrinos
- Truth level MC study into ionisation energy deposition from Michel electrons
 - Large variation in radiated energy deposits \rightarrow need to collect radiated energy
- Event selection based on CNN tagged Michel–like hits at very high purity
- Beginning to work on Energy reconstruction
 - Use hits tagged during event selection to define a cone for hit collection
 - Use hits tagged during event selection to define images for energy reconstruction with CNN