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IntroductionIntroduction

♦ Yesterday I described a variety of different (TPC) calibrations 
that are relevant for DUNE, and some handles for them
• Careful percent-level calibration of DUNE FD will be critical to 

achieving CP violation result within lifetime of experiment

♦ Focus today on one as a case study:  space charge effects
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Space Charge EffectSpace Charge Effect

♦ Space Charge Effect (SCE):  distortion of E field and 
ionization drift trajectories due to build-up of slow-moving 
argon ions produced from cosmic muons impinging TPC
• E field distortions impact recombination (dQ bias)

• Spatial distortions lead to squeezing of charge (dx bias)

♦ See MicroBooNE public note on SCE for more details

t0 tags

from MuCS

plot TPC track 
start/end points

https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1018-PUB.pdf
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Motivation to Study SCEMotivation to Study SCE

♦ Why study space charge effects at DUNE?
• Impacts neutrino reconstruction

at ProtoDUNE (on surface)
– Cosmic removal

– Reconstruction efficiencies

– dQ/dx (PID, calorimetry)

• Necessary to understand to
extrapolate study of standard
candles at ProtoDUNE to DUNE FD

• Should be tiny at DUNE FD (deep 
underground), but must demonstrate this

♦ This talk:  describe space charge effect simulation, present 
validation of SCE simulation with MicroBooNE data, and 
show predictions of SCE at ProtoDUNE and DUNE FD
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SCE SimulationSCE Simulation

♦ Code written (by Mike M.) in C++ with ROOT libraries

♦ Also makes use of external libraries (ALGLIB)

♦ Primary features:
• Obtain E fields analytically (on 3D grid) via Fourier series

• Use interpolation scheme (RBF – radial basis functions) to 
obtain E fields in between solution points on grid

• Generate tracks in volume – line of uniformly-spaced points

• Employ ray-tracing to “read out” reconstructed {x,y,z} point for 
each track point – RKF45 method

♦ Can simulate arbitrary ion charge density profile if desired
• Linear space charge density approximation for present studies

♦ Output:  E field and spatial distortion maps (vs. {x,y,z})
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SCE Sim. Results for SCE Sim. Results for μμBooNEBooNE

ΔEx/Edrift ΔEy/Edrift

Δx Δy

Central
Z Slice
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Example Event w/ SCEExample Event w/ SCE

Nominal Drift 
Field

500 V/cm

Half Drift
Field

250 V/cm
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SCE Sim. Validation at SCE Sim. Validation at μμBooNEBooNE

♦ Studied SCE spatial distortions w/ muon counter system at μBooNE

♦ SCE simulation qualitatively reproduces effect
• Agreement in normalization, basic shape features, but offset near anode 

in data... impact from liquid argon flow?

• Calibration in progress using UV laser system, cosmic muons

♦ See MicroBooNE public note on SCE studies

MicroBooNE Preliminary

Ionization
Electron

Drift

Data/MC Comparison
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http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1018-PUB.pdf
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Storing SCE Offsets in LArSoftStoring SCE Offsets in LArSoft

♦ Can use simulation tool to produce displacement maps

• Forward transportation:  {x, y, z}
true

 → {x, y, z}
reco

– Use to simulate effect in MC

– Uncertainties describe accuracy of simulation

• Backward transportation:  {x, y, z}
reco

 → {x, y, z}
true

– Derive from calibration and use in data or MC to correct 
reconstruction bias

– Uncertainties describe remainder systematic after bias-correction

♦ Two principal methods to encode displacement maps:
• Parametric representation (for now, 5th/7th order polynomials) – 

fewer parameters (thanks to Xin Qian for parametrization)

• Matrix representation – more generic/flexible

♦ LArSoft module exists to utilize maps (parametric only for now)
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Accessing SCE Offsets in LArSoftAccessing SCE Offsets in LArSoft

♦ Can easily access offsets using “SpaceCharge” service
• Implementation of spatial and E field distortions in larsim 

(LArVoxelReadout and ISCalculationSeparate, respectively)

• Detector-specific implementations for accessing E field and spatial 
distortion maps in each experiment's repository (e.g. dunetpc)

♦ To enable SCE, add these lines to your g4 stage .fcl file:
• services.SpaceCharge.EnableSimEfieldSCE:  true

• services.SpaceCharge.EnableSimSpatialSCE:  true

♦ Currently implemented for MicroBooNE, 35-ton, and 
ProtoDUNE-SP
• Not yet implemented for DUNE FD, but a relatively simple addition

• SBND, ICARUS maps exist as well, will be ported into LArSoft soon

• Will also add for case of ProtoDUNE-DP
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SCE at ProtoDUNE-SPSCE at ProtoDUNE-SP

ΔEx/Edrift ΔEy/Edrift

Δx Δy

Central
Z Slice
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SCE at ProtoDUNE-DPSCE at ProtoDUNE-DP

ΔEx/Edrift ΔEy/Edrift

Δx Δy

Central
Z Slice
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What about DUNE FD?What about DUNE FD?

♦ Start with some simple calculations

♦ Expected cosmic rate at DUNE FD (one 10 kt module):
• If on surface:  O(30000)/second  (projection from μBooNE)

• On 4850L:  O(4000)/day → O(0.01)/second

♦ Space charge scales with cosmic rate, and is roughly three 
million times less bad than if on surface.  Negligible!
• Effect highly stochastic/local (unlikely to impact ν events)

♦ What about contribution from Ar-39?
• Assume 1 Bq/kg → ten million decays/second in DUNE FD

• Roughly 1.0 × 10-12 C/m3/s vs. 2.0 × 10-10 C/m3/s from cosmics on 
surface → small, but might not be negligible

♦ Study SCE sim. using prediction of space charge from Ar-39
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SCE at DUNE SP FDSCE at DUNE SP FD

ΔEx/Edrift ΔEy/Edrift

Δx Δy

Central
Z Slice
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SCE at DUNE DP FDSCE at DUNE DP FD

ΔEx/Edrift ΔEy/Edrift

Δx Δy

Central
Z Slice
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Comparing Across DetectorsComparing Across Detectors

♦ Space charge effects worse for detectors on surface
• MicroBooNE and ProtoDUNE-SP see significant distortions

• DUNE SP FD sees negligible impact (unless space charge piles up due 
to liquid argon flow pattern – not observed at MicroBooNE)

MicroBooNE:
O(15%) E Field 

Distortions
5-7% dQ/dx Bias

ProtoDUNE-SP:
O(15%) E Field 

Distortions
6-8% dQ/dx Bias

DUNE SP FD:
O(0.1%) E Field 

Distortions
< 0.1% dQ/dx Bias
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Comparing Across DetectorsComparing Across Detectors

♦ Space charge effects worse for detectors on surface
• MicroBooNE and ProtoDUNE-SP see significant distortions

• DUNE SP FD sees negligible impact (unless space charge piles up due 
to liquid argon flow pattern – not observed at MicroBooNE)

MicroBooNE:
O(15 cm) Spatial

Distortions
5-7% dQ/dx Bias

ProtoDUNE-SP:
O(20 cm) Spatial

Distortions
6-8% dQ/dx Bias

DUNE SP FD:
O(0.1 cm) Spatial

Distortions
< 0.1% dQ/dx Bias



18

SCE Calibration SchemeSCE Calibration Scheme
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DiscussionDiscussion

♦ Space charge effects not large at DUNE SP FD, but are 
significant at ProtoDUNEs
• Necessary to understand at ProtoDUNE so we can extrapolate 

studies of standard candles in data from ProtoDUNE to DUNE FD

• Also, SCE not negligible at DUNE DP FD (may be even worse than 
predictions due to contributions from gas phase)

• A lot of discussion about ProtoDUNE (and DUNE FD) calibrations in 
ProtoDUNE “DRA” meetings (Thursdays, 8 am CT)

– ProtoDUNE-SP calibrations convener:  Mike M.

!!!
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BACKUP
SLIDES
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TPC Calibration ItemsTPC Calibration Items

♦ Break calibrations items into three categories:  ex-situ, in-situ w/ 
pulser, in-situ w/ ionization signals

♦ Ex-situ (can also be performed in-situ, at least in principle):
• Diffusion (longitudinal and transverse)

• Recombination (angular/energy dependence, fluctuations)

• Wire field response (modulo potential wire-to-wire variations)

♦ In-situ w/ pulser:
• Electronics response (gain, shaping time, pole-zero effects, etc.)

• ADC ASIC calibrations (linearity, other “features” like stuck codes)

♦ In-situ w/ ionization signals:
• Electron lifetime (including spatial/temporal variations)

• Space charge effects and other field effects (e.g. field cage resistor failure)

• Wire field response wire-to-wire variations (negligible?  should check)

♦ Nail these, then study “standard candles” in data (e.g. Michels)
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Differing ConcernsDiffering Concerns

♦ Different experiments face somewhat different issues

All Items Except ADC Issues
(And Less Requirements)

All Items Except
SCE, ADC Issues

All Items:
SCE Worse,
ADC Issues
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Differing ToolsDiffering Tools

♦ Each experiment has different calibration tools to utilize

UV Laser System, Full CRT,
Plenty of Cosmics/Michels, Ar-39

UV Laser System (?), Radioactive 
Sources (?), Few Cosmics/Michels, Ar-39

Partial CRT, Plenty
 of Cosmics/Michels,

Ar-39
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Calibrations with Ar-39Calibrations with Ar-39

♦ Can use Ar-39 beta decays for two types of calibrations:  
normalization and shape

♦ Normalization (reconstructed energy):
• Electron lifetime (spatial/temporal variations)

• Recombination (at low energies)

♦ Shape (shape of signal on wires):
• Field response (variations across wires)

• Diffusion (longitudinal and transverse)

♦ Also measure Ar-39 rate, study low-energy charge 
detection/reconstruction (e.g. for SN neutrino studies), use 
methods to study other radiological sources in TPC, etc.

♦ Can't t0 tag, but uniform in x, enabling calibrations use
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Recombination and Ar-39Recombination and Ar-39

♦ Lack of knowledge of recombination will complicate use of 
spectrum for nailing down electron lifetime
• Need to know both mean recombination and fluctuations in 

recombination at this energy scale

• Chatting with experts, conclusion is that we don't know this very 
well for argon, needs study for precision calibration

♦ Ahead of DUNE, measure Ar-39 charge spectrum
• Being studied by CSU group

at MicroBooNE (ongoing)

• In separate TPC setup for
precision measurement

– Underground

– Short drift

– t0 tag from light

M. Mooney,
D. Warner

Conceptual 
design for 
portable cryostat
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