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IntroductionIntroduction

♦ DUNE is a hard experiment!
• Our energy scale uncertainty budget is 2% – this is in total... so 

each detector effect must be pinned down more precisely than that

♦ Careful percent-level calibration of DUNE FD will be critical 
to achieving CP violation result within lifetime of experiment
• How well we can calibrate will set our detector systematics
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Different ParadigmsDifferent Paradigms

♦ Experience w/ MicroBooNE calibrations very helpful

♦ However, not a rinse-and-repeat!
• Jump in calibration precision needs:  O(10%) → O(1%)

• Different calibration tools (e.g. few cosmics at DUNE FD)

♦ Correspondingly, some additional thought necessary

MicroBooNE:
A O(10%) Experiment

DUNE:
A O(1%) Experiment
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Bridging the Uncertainty GapBridging the Uncertainty Gap

♦ Bridging the uncertainty gap with ProtoDUNE will be useful

MicroBooNE:
A O(10%) Experiment

DUNE:
A O(1%) Experiment

ProtoDUNE:
An Intermediate Step
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TPC Calibration ItemsTPC Calibration Items

♦ Break calibrations items into three categories:  ex-situ, in-situ w/ 
pulser, in-situ w/ ionization signals

♦ Ex-situ (can also be performed in-situ, at least in principle):
• Diffusion (longitudinal and transverse)

• Recombination (angular/energy dependence, fluctuations)

• Wire field response (modulo potential wire-to-wire variations)

♦ In-situ w/ pulser:
• Electronics response (gain, shaping time, pole-zero effects, etc.)

• ADC ASIC calibrations (linearity, other “features” like stuck codes)

♦ In-situ w/ ionization signals:
• Electron lifetime (including spatial/temporal variations)

• Space charge effects and other field effects (e.g. field cage resistor failure)

• Wire field response wire-to-wire variations (negligible?  should check)

♦ Nail these, then study “standard candles” in data (e.g. Michels)
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TPC Calibration ItemsTPC Calibration Items

♦ Break calibrations items into three categories:  ex-situ, in-situ w/ 
pulser, in-situ w/ ionization signals

♦ Ex-situ (can also be performed in-situ, at least in principle):
• Diffusion (longitudinal and transverse)

• Recombination (angular/energy dependence, fluctuations)

• Wire field response (modulo potential wire-to-wire variations)

♦ In-situ w/ pulser:
• Electronics response (gain, shaping time, pole-zero effects, etc.)

• ADC ASIC calibrations (linearity, other “features” like stuck codes)

♦ In-situ w/ ionization signals:
• Electron lifetime (including spatial/temporal variations)

• Space charge effects and other field effects (e.g. field cage resistor failure)

• Wire field response wire-to-wire variations (negligible?  should check)

♦ Nail these, then study “standard candles” in data (e.g. Michels)

This list neglects the photon detector system!
This deserves thought as well.
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Differing ConcernsDiffering Concerns

♦ Different experiments face somewhat different issues

All Items Except ADC Issues
(And Less Requirements)

All Items Except
SCE, ADC Issues

All Items:
SCE Worse,
ADC Issues
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Example: Space Charge EffectsExample: Space Charge Effects

♦ Case study:  space charge effects worse for detectors on surface
• MicroBooNE and ProtoDUNE-SP see significant distortions

• DUNE SP FD sees negligible impact (unless space charge piles up due 
to liquid argon flow pattern – not observed at MicroBooNE)

MicroBooNE:
O(15%) E Field 

Distortions
5-7% dQ/dx Bias

ProtoDUNE-SP:
O(15%) E Field 

Distortions
6-8% dQ/dx Bias

DUNE SP FD:
O(0.1%) E Field 

Distortions
< 0.1% dQ/dx Bias
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Example: Space Charge EffectsExample: Space Charge Effects

♦ Case study:  space charge effects worse for detectors on surface
• MicroBooNE and ProtoDUNE-SP see significant distortions

• DUNE SP FD sees negligible impact (unless space charge piles up due 
to liquid argon flow pattern – not observed at MicroBooNE)

MicroBooNE:
O(15 cm) Spatial

Distortions
5-7% dQ/dx Bias

ProtoDUNE-SP:
O(20 cm) Spatial

Distortions
6-8% dQ/dx Bias

DUNE SP FD:
O(0.1 cm) Spatial

Distortions
< 0.1% dQ/dx Bias
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Differing ToolsDiffering Tools

♦ Each experiment has different calibration tools to utilize

UV Laser System, Full CRT,
Plenty of Cosmics/Michels, Ar-39

UV Laser System (?), Radioactive 
Sources (?), Few Cosmics/Michels, Ar-39

Partial CRT, Plenty
 of Cosmics/Michels,

Ar-39
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Reality Check for DUNE FDReality Check for DUNE FD

♦ Many calibrations done at MicroBooNE utilize cosmic rays
• MicroBooNE on surface → 4000 cosmics/second

♦ Not a reliable option at DUNE FD due to being almost a mile 
underground
• DUNE FD:  4000 cosmics/day (and 20 Michels/day)

• … and this is for an entire 10 kt module!

• Corresponds to 5 cosmics/day/m3

♦ Cosmics can still help, but need alternative charge sources

♦ Plenty of Ar-39 beta decays at DUNE FD (O(50000) per 
readout) – good option that should be explored for DUNE
• Can first study use at MicroBooNE

• Some brief discussion is warranted here
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Ar-39 Beta DecaysAr-39 Beta Decays

♦ Ar-39 beta decay cut-off 
energy is 565 keV
• This is close to the energy 

deposited on a single wire by a 
MIP at MicroBooNE

♦ Several things smear observed 
charge spectrum, e.g.:
• Noise

• Recombination fluctuations

• Unknown location of Ar-39 
decay in TPC

♦ For last point:  we know 
decays are uniform in x

Benetti et al., “Measurement 
of the specific activity of Ar-39 
in natural argon” (2006).

https://arxiv.org/abs/astro-ph/0603131
https://arxiv.org/abs/astro-ph/0603131
https://arxiv.org/abs/astro-ph/0603131
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Ar-39 Beta DecaysAr-39 Beta Decays

♦ Ar-39 beta decay cut-off 
energy is 565 keV
• This is close to the energy 

deposited on a single wire by a 
MIP at MicroBooNE

♦ Several things smear observed 
charge spectrum, e.g.:
• Noise

• Recombination fluctuations

• Unknown location of Ar-39 
decay in TPC

♦ For last point:  we know 
decays are uniform in x

Example Use Case:
Fine-Grained Electron 
Lifetime Measurement
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MicroBooNE CalibrationsMicroBooNE Calibrations

♦ Several calibrations still in progress at MicroBooNE
• Brief overview of some preliminary results in backup slides

• Will inform calibration efforts at both ProtoDUNE and DUNE FD
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ProtoDUNE CalibrationsProtoDUNE Calibrations

♦ No data yet of course, but already planning out calibrations at 
ProtoDUNE
• Goal:  calibrate ProtoDUNE, learn as much as we can about DUNE FD

– Keep in mind: negligible SCE and no ADC issues at DUNE FD

• A lot of discussion in DUNE “DRA” meetings (Thursdays, 8 am CT)
– ProtoDUNE-SP calibrations convener:  Mike M.
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DUNE Physics Week GoalsDUNE Physics Week Goals

♦ Main goal for the DUNE physics week is very basic:  get the 
discussion going regarding calibrations and detector 
systematics at DUNE (including utilizing ProtoDUNE data)
• Detector systematics for LBL physics is a good motivator

♦ Beyond that:
• Create a priority list for things most important to tackle in 

calibrations (based upon what we think will impact us the most)
– Preliminary list (TPC only) earlier in talk, but should “rank”

• Study impact of individual systematics on LBL sensitivity
– Requires some tool development, interface to simulations/reco.

– Maybe start with a “simple” case study, like electron lifetime?

♦ Please let me know if you're interested in contributing!

♦ Questions?
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BACKUP
SLIDES
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Calibrations with Ar-39Calibrations with Ar-39

♦ Can use Ar-39 beta decays for two types of calibrations:  
normalization and shape

♦ Normalization (reconstructed energy):
• Electron lifetime (spatial/temporal variations)

• Recombination (at low energies)

♦ Shape (shape of signal on wires):
• Field response (variations across wires)

• Diffusion (longitudinal and transverse)

♦ Also measure Ar-39 rate, study low-energy charge 
detection/reconstruction (e.g. for SN neutrino studies), use 
methods to study other radiological sources in TPC, etc.

♦ Can't t0 tag, but uniform in x, enabling calibrations use
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Recombination and Ar-39Recombination and Ar-39

♦ Lack of knowledge of recombination will complicate use of 
spectrum for nailing down electron lifetime
• Need to know both mean recombination and fluctuations in 

recombination at this energy scale

• Chatting with experts, conclusion is that we don't know this very 
well for argon, needs study for precision calibration

♦ Ahead of DUNE, measure Ar-39 charge spectrum
• Being studied by CSU group

at MicroBooNE (ongoing)

• In separate TPC setup for
precision measurement

– Underground

– Short drift

– t0 tag from light

M. Mooney,
D. Warner

Conceptual 
design for 
portable cryostat
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Filtering Out Excess NoiseFiltering Out Excess Noise

♦ MicroBooNE originally had 
excess noise “out of the box”

♦ Developed software noise 
filtering scheme – virtually gone

♦ Also addressed in hardware
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Noise Filtering PerformanceNoise Filtering Performance

♦ Noise level rises linearly with capacitive load (wire length) after 
noise filtering, matches test stand expectations

♦ After noise filtering, Peak Signal-to-Noise Ratio (PSNR) increases 
from 20 (6) to 38 (19) for collection (induction) plane(s)

♦ See MicroBooNE noise paper

https://arxiv.org/abs/1705.07341
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Signal ProcessingSignal Processing

♦ Tuned wire field response simulation to data

♦ Account for induced charge on neighboring wires
• Leads to recovery of tracks at high angle w.r.t. anode

♦ Redo simulation for DUNE (~5 mm pitch vs. 3 mm)

APS Four Corners Parallel Talk by
Ivan Caro Terrazas (CSU Student)
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Signal ProcessingSignal Processing

♦ Tuned wire field response simulation to data

♦ Account for induced charge on neighboring wires
• Leads to recovery of tracks at high angle w.r.t. anode

♦ Redo simulation for DUNE (~5 mm pitch vs. 3 mm)

APS Four Corners Parallel Talk by
Ivan Caro Terrazas (CSU Student)

Two Upcoming Papers on Signal
Processing at MicroBooNE:

1)  Methodology
2)  Performance, Data/MC Comparisons

Stay Tuned!
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Space Charge EffectsSpace Charge Effects

♦ Studied SCE spatial distortions using muon counter system

♦ SCE simulation qualitatively reproduces effect
• Agreement in normalization, basic shape features, but offset near 

anode in data... impact from liquid argon flow?

• Calibration in progress using UV laser system, cosmic muons

♦ See MicroBooNE public note on SCE studies

MicroBooNE Preliminary

Ionization
Electron

Drift

Data/MC Comparison

A
n

o
d

e

C
a

th
o

d
e

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1018-PUB.pdf
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Electron Lifetime MeasurementElectron Lifetime Measurement

♦ Measured electron lifetime daily by fitting to distribution of 
cosmic muon track dQ/dx vs. ionization electron drift time
• Complications from space charge effects (systematic for first pass)

♦ Lifetime consistently above 10 ms, often much higher

♦ See MicroBooNE public note on electron lifetime

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1026-PUB.pdf
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Michel Electron SpectrumMichel Electron Spectrum

♦ Tag Michel electrons from cosmic muon decay using “kink” 
topology and muon Bragg peak

• Callibration sample for energy 
scale, tuning e-, γ reco.

• Tells us how well we cluster charge

• See MicroBooNE Michel paper

https://arxiv.org/abs/1704.02927
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ProtoDUNE DevelopmentsProtoDUNE Developments

♦ Many ongoing ProtoDUNE calibration studies
• New noise model (based on MicroBooNE)

• Signal processing updates

• Track-based calibrations (e.g. t0-tagging with CRT)

• Study/calibration of ADC “features” (Ryan LaZur, CSU student)

• Studying impact of SCE in numerous ways

• … and many other topics!

Data-Driven
Noise Model

Implemented by 
Jingbo/Mike

Based on work by
Adam Lister, 

Jyoti Joshi and 
others at BNL

Cosmic Track 
t0-tagging Purity 

Studies w/ CRT by 
Arbin Timilsina
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SummarySummary

♦ Again... DUNE is a hard experiment!
• Remember:  our total energy scale uncertainty budget is 2%

♦ Precision calibrations are essential for DUNE physics program
• Learn from experiences at MicroBooNE

• Extrapolate to DUNE FD via studies at ProtoDUNE
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Field Response Comp.Field Response Comp.

♦ Compare DUNE and MicroBooNE, 
full responses (field and 
electronics)

♦ Fix max signal amplitude in 
comparison

♦ Very similar shape, despite 
MicroBooNE at 273 V/cm due to 
larger inter-plane distance

U Plane

V Plane Y Plane
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♦ MicroBooNE has released public note documenting signal 
processing techniques useful for LArTPC experiments
• See public note here:  MICROBOONE-NOTE-1017-PUB

♦ This note describes 2D deconvolution technique
• Technique improved since public note – paper forthcoming

• Nature of detector response different than current assumption that 
only closest wire matters (see below figure)

• Worst for MicroBooNE (3 mm spacing), still important for PD-SP

30

MicroBooNE SP Public NoteMicroBooNE SP Public Note

http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1017-PUB.pdf
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♦ Also detailed in the note is the importance of a deconvolution 
filter – prevents noise blow-up when dividing out response

♦ Wiener filter gives optimal peak-to-peak separation, but if fitting 
to Gaussians (GaussHitFinder) → better to use Gaussians!

31

Signal Processing ConceptsSignal Processing Concepts

Deconvolution Wiener Filter
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