

Calibration and Detector Systematics for DUNE

Michael Mooney

Colorado State University

DUNE Physics Week November 15th, 2017

Introduction

- DUNE is a hard experiment!
 - Our energy scale uncertainty budget is 2% this is in total... so each detector effect must be pinned down more precisely than that
- Careful percent-level calibration of DUNE FD will be **critical** to achieving CP violation result within lifetime of experiment
 - How well we can calibrate will set our **detector systematics**

Different Paradigms

- Experience w/ MicroBooNE calibrations very helpful
- However, not a rinse-and-repeat!
 - Jump in calibration precision needs: $O(10\%) \rightarrow O(1\%)$
 - Different calibration tools (e.g. few cosmics at DUNE FD)
- Correspondingly, some additional thought necessary

Bridging the Uncertainty Gap

- Bridging the uncertainty gap with ProtoDUNE will be useful

A O(10%) Experiment

A O(1%) Experiment

TPC Calibration Items

- Break calibrations items into three categories: ex-situ, in-situ w/ pulser, in-situ w/ ionization signals
- Ex-situ (can also be performed in-situ, at least in principle):
 - Diffusion (longitudinal and transverse)
 - Recombination (angular/energy dependence, fluctuations)
 - Wire field response (modulo potential wire-to-wire variations)
- In-situ w/ pulser:
 - Electronics response (gain, shaping time, pole-zero effects, etc.)
 - ADC ASIC calibrations (linearity, other "features" like stuck codes)
- In-situ w/ ionization signals:
 - Electron lifetime (including spatial/temporal variations)
 - Space charge effects and other field effects (e.g. field cage resistor failure)
 - Wire field response wire-to-wire variations (negligible? should check)
- Nail these, then study "standard candles" in data (e.g. Michels)

TPC Calibration Items

- Break calibrations items into three categories: ex-situ, in-situ w/ pulser, in-situ w/ ionization signals
- Ex-situ (can also be performed in-situ, at least in principle):
 - Diffusion (longitudinal and transverse)
 - Recombination (angular/energy dependence, fluctuations)
 - Wire field response (module potential wire-to-wire variations)
- In-site
 This list neglects the photon detector system!
 This deserves thought as well.
 ADC ASL
- In-situ w/ ionization signals:
 - Electron lifetime (including spatial/temporal variations)
 - Space charge effects and other field effects (e.g. field cage resistor failure)
 - Wire field response wire-to-wire variations (negligible? should check)
- Nail these, then study "standard candles" in data (e.g. Michels)

Differing Concerns

Different experiments face somewhat different issues

All Items Except ADC Issues (And Less Requirements) All Items Except SCE, ADC Issues

Example: Space Charge Effects

- <u>Case study</u>: space charge effects worse for detectors on surface
 - MicroBooNE and ProtoDUNE-SP see significant distortions
 - DUNE SP FD sees negligible impact (unless space charge piles up due to liquid argon flow pattern not observed at MicroBooNE)

Example: Space Charge Effects

- <u>Case study</u>: space charge effects worse for detectors on surface
 - MicroBooNE and ProtoDUNE-SP see significant distortions
 - DUNE SP FD sees negligible impact (unless space charge piles up due to liquid argon flow pattern not observed at MicroBooNE)

• Each experiment has different calibration tools to utilize

UV Laser System, Full CRT, Plenty of Cosmics/Michels, Ar-39 UV Laser System (?), Radioactive Sources (?), Few Cosmics/Michels, Ar-39

Reality Check for DUNE FD

- Many calibrations done at MicroBooNE utilize cosmic rays
 - MicroBooNE on surface → **4000 cosmics/second**
- Not a reliable option at DUNE FD due to being almost a mile underground
 - DUNE FD: **4000 cosmics/day** (and **20 Michels/day**)
 - ... and this is for an entire 10 kt module!
 - Corresponds to 5 cosmics/day/m³
- Cosmics can still help, but need alternative charge sources
- Plenty of Ar-39 beta decays at DUNE FD (O(50000) per readout) good option that should be explored for DUNE
 - Can first **study use at MicroBooNE**
 - Some brief discussion is warranted here

Ar-39 Beta Decays

Benetti et al., "Measurement of the specific activity of Ar-39 in natural argon" (2006).

- Ar-39 beta decay cut-off energy is 565 keV
 - This is **close** to the energy deposited on a single wire by a MIP at MicroBooNE
- Several things smear observed charge spectrum, e.g.:
 - Noise
 - Recombination fluctuations
 - Unknown location of Ar-39 decay in TPC
- For last point: we know decays are uniform in x

Ar-39 Beta Decays

Example Use Case: Fine-Grained Electron Lifetime Measurement

- Ar-39 beta decay cut-off energy is 565 keV
 - This is **close** to the energy deposited on a single wire by a MIP at MicroBooNE
- Several things smear observed charge spectrum, e.g.:
 - Noise
 - Recombination fluctuations
 - Unknown location of Ar-39 decay in TPC
- For last point: we know decays are uniform in x

- Several calibrations still in progress at MicroBooNE
 - Brief overview of some preliminary results in backup slides
 - Will inform calibration efforts at both ProtoDUNE and DUNE FD

- No data yet of course, but already planning out calibrations at **ProtoDUNE**
 - <u>Goal</u>: calibrate ProtoDUNE, learn as much as we can about DUNE FD
 - Keep in mind: negligible SCE and no ADC issues at DUNE FD
 - A lot of discussion in DUNE "DRA" meetings (Thursdays, 8 am CT) •
 - ProtoDUNE-SP calibrations convener: Mike M.

DUNE Physics Week Goals

- Main goal for the DUNE physics week is very basic: get the discussion going regarding calibrations and detector systematics at DUNE (including utilizing ProtoDUNE data)
 - Detector systematics for LBL physics is a good motivator
- Beyond that:
 - Create a priority list for things most important to tackle in calibrations (based upon what we think will impact us the most)
 - Preliminary list (TPC only) earlier in talk, but should "rank"
 - Study impact of **individual systematics** on LBL sensitivity
 - Requires some tool development, interface to simulations/reco.
 - Maybe start with a "simple" case study, like electron lifetime?
- Please let me know if you're interested in contributing!
- Questions?

BACKUP SLIDES

- Can use Ar-39 beta decays for two types of calibrations: normalization and shape
- Normalization (reconstructed energy):
 - Electron lifetime (spatial/temporal variations)
 - Recombination (at low energies)
- Shape (shape of signal on wires):
 - Field response (variations across wires)
 - Diffusion (longitudinal and transverse)
- Also measure Ar-39 rate, study low-energy charge detection/reconstruction (e.g. for SN neutrino studies), use methods to study other radiological sources in TPC, etc.
- Can't t_o tag, but **uniform in x**, enabling calibrations use

- Lack of knowledge of recombination will complicate use of spectrum for nailing down electron lifetime
 - Need to know both mean recombination and fluctuations in recombination at this energy scale
 - Chatting with experts, conclusion is that we don't know this very well for argon, needs study for precision calibration

• Ahead of DUNE, **measure Ar-39 charge spectrum**

- Being studied by CSU group at MicroBooNE (ongoing)
- In separate TPC setup for precision measurement
 - Underground
 - Short drift
 - t_o tag from light

M. Mooney, D. Warner

Conceptual design for portable cryostat

Filtering Out Excess Noise

- MicroBooNE originally had excess noise "out of the box"
- Developed software noise filtering scheme – virtually gone
- Also addressed in hardware

Noise Filtering Performance

- Noise level rises linearly with capacitive load (wire length) after noise filtering, matches test stand expectations
- After noise filtering, Peak Signal-to-Noise Ratio (PSNR) increases from 20 (6) to 38 (19) for collection (induction) plane(s)
- See MicroBooNE noise paper

Signal Processing

- Tuned wire field response simulation to data
 - Account for induced charge on neighboring wires
 - Leads to recovery of tracks at high angle w.r.t. anode
- ◆ Redo simulation for DUNE (~5 mm pitch vs. 3 mm)

Signal Processing

Space Charge Effects

- Studied SCE spatial distortions using muon counter system
- SCE simulation qualitatively reproduces effect
 - Agreement in normalization, basic shape features, but offset near anode in data... impact from **liquid argon flow?**
 - Calibration in progress using UV laser system, cosmic muons
- See MicroBooNE public note on SCE studies

Electron Lifetime Measurement

- Measured electron lifetime daily by fitting to distribution of cosmic muon track dQ/dx vs. ionization electron drift time
 - Complications from space charge effects (systematic for first pass)
- ◆ Lifetime consistently **above 10 ms**, often much higher
- See MicroBooNE public note on electron lifetime

Michel Electron Spectrum

- Tag Michel electrons from cosmic muon decay using "kink" topology and muon Bragg peak
 - Callibration sample for energy scale, tuning e⁻, γ reco.
 - Tells us how well we **cluster charge**
 - See MicroBooNE Michel paper

- Many ongoing ProtoDUNE calibration studies
 - New noise model (based on MicroBooNE)
 - Signal processing updates
 - Track-based calibrations (e.g. t_o-tagging with CRT)
 - Study/calibration of ADC "features" (Ryan LaZur, CSU student)
 - Studying impact of SCE in numerous ways
 - ... and many other topics!

- Again... DUNE is a hard experiment!
 - <u>Remember</u>: our **total** energy scale uncertainty budget is **2%**
- Precision calibrations are essential for DUNE physics program
 - Learn from experiences at MicroBooNE
 - Extrapolate to DUNE FD via studies at ProtoDUNE

28

Field Response Comp.

- Compare DUNE and MicroBooNE, full responses (field and electronics)
- Fix max signal amplitude in comparison
- Very similar shape, despite MicroBooNE at 273 V/cm due to larger inter-plane distance

MicroBooNE SP Public Note

- MicroBooNE has released public note documenting signal processing techniques useful for LArTPC experiments
 - See public note here: MICROBOONE-NOTE-1017-PUB
- This note describes 2D deconvolution technique
 - Technique improved since public note paper forthcoming
 - Nature of detector response different than current assumption that only closest wire matters (see below figure)
 - Worst for MicroBooNE (3 mm spacing), still important for PD-SP

Signal Processing Concepts

 Also detailed in the note is the importance of a deconvolution filter – prevents noise blow-up when dividing out response

 ♦ Wiener filter gives optimal peak-to-peak separation, but if fitting to Gaussians (GaussHitFinder) → better to use Gaussians!

